# The Design-Time Side-Channel Information Leakage Estimation

## Jan Bělohoubek

jan.belohoubek@fit.cvut.cz

Faculty of Information Technology Czech Technical University in Prague

## Motivation

Information Leakage

- Digital circuits offer sensitive information while computation(side-channel)
- Today circuit designers compete with attackers:
  - Designers are trying to build circuits resistant to SPA, DPA, Faultattack, Combined (Fault + PA) ...
  - $\rightarrow\,$  Decrease the information offered thru side-channel
  - $\rightarrow$  Measure the information offered thru side-channel



- Unbalanced data/control paths (Different loads, Place&Route, Early evaluation)
- Unbalanced computation (data-dependent algorithms)
- Completion detection asynchronous circuits

### Localize Weakness and Estimate Potential

- How to distinguish good idea<sup>1</sup> and bad idea during the different design phases?
  - post-Synthesis what can be achieved with current design?
  - post-Map what can be achieved with current cell library?
  - post-Place&Route how will behave the physical design?

How To Measure Vulnerability?

- Production time
  - Number of traces needed to break the circuit (get AES key)
- Design time
  - Use number of traces  $^2$  accurate simulation + many traces  $\rightarrow$  time !?
  - − Use well established methods make conservative (but subjective) estimation  $\rightarrow$  accuracy !?
  - Do we have objective and efficient metric?

## The Method

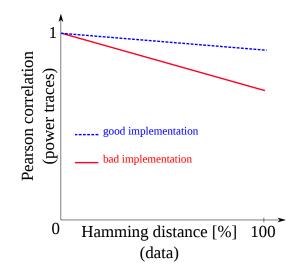
#### Using Power Traces

- The sensitive information leaking from the circuit influences the character of the power traces
  - Timing differential peak position; duration of the computation
  - Fault differential peak position, width or height; duration of the computation
  - Unbalanced paths differential peak position, width or height
- $\rightarrow$  Many types of information leakage are aggregated in power traces
- $\rightarrow\,$  Using only power traces for vulnerability evaluation is sufficient

 $<sup>^1\</sup>mathrm{Is}$  a certain circuit implementation better from the side-channel vulnerability point of view?

<sup>&</sup>lt;sup>2</sup>K. Smith and M. Łukowiak, "Methodology for simulated power analysis attacks on AES," 2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE, San Jose, CA, 2010, pp. 1292-1297.

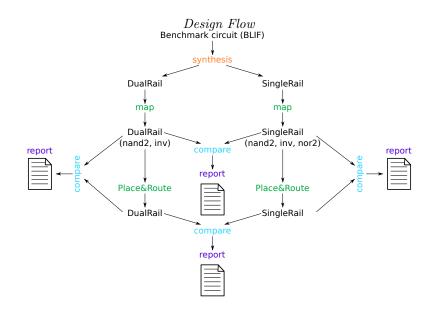
## • What is Required?


- Fast vulnerability estimation allowing incorporation into the design flow process
- Measure the information contained in power trace
- Estimation at different design levels post-Synthesis, post-Map, post-Place&Route

## • What is Observed?

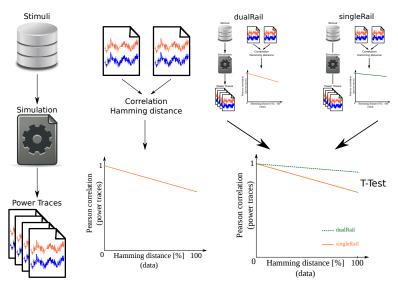
- The information in the power trace is proportional to the similarity of traces
  - $\rightarrow\,$  If all traces would be equal, the attacker can extract no information
  - $\rightarrow\,$  If there is a dependency between the processed data and power trace patterns, the attacker may extract information

## Data vs. Power Trace Dependency


- Let's search for data vs. power trace dependency
  - Data similarity metric: Hamming distance
  - Power trace similarity metric: Pearson correlation
  - $\rightarrow\,$  Is correlation of traces for similar data high and for different data (significantly) low?



### Methodology


## The Current Design Potential

- post-Synthesis what can be achieved with current design?
  - No physical layer information!
  - Is simulation-based estimation possible? It is not possible without any assumption about technology!
- post-Map what can be achieved with current cells?
  - Take information about cells only (parasitic capacitances, conductivity,  $\ldots)$
  - Interconnection is assumed ideally balanced (or zero delay/power)
  - Place&Route can make things worse
- post-Place&Route the "reality"
  - Should be close to physical design

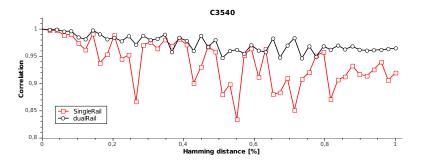


## Combinational Circuits

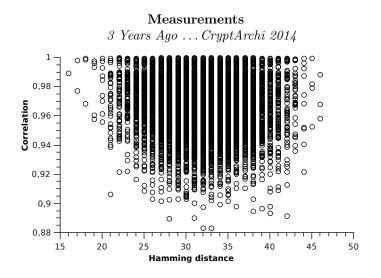
- Generate the stimuli set:
  - Initial vector is generated randomly
  - Other vectors are derived by inverting bits in the initial vector
  - $\rightarrow~$  The stimuli set contains vectors with Hamming distances (0% 100 %)
- Use stimuli to get power traces (simulation)
- Compute Pearson correlation for all pairs of power traces
- Build a data-set containing pairs: [Hamming distance, Correlation] (plot ...)
- Compare different implementations: formulate hypothesis and test by using the t-test



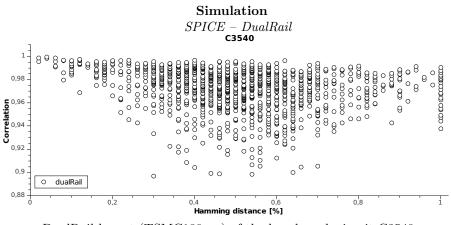
# Simulation


# Tools

- Spice open (ngSpice); too accurate; too slow
- Synopsys PrimeTime PX commercial looks fine (not tested yet)
- IRSIM open alternative to PTPX?; fast; too old
  - Produces event times, not power traces (poweEst package is available)
  - Good for CMOS with lambda  $\geq 1 \ \mu m$  technology
  - For CMOS below 1  $\mu m$ , the results looks bad characterization failed ...

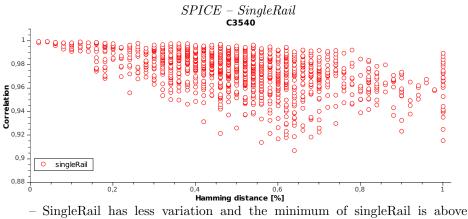

### Combinational Circuits

- Stimuli set contains i vectors, where i is equal to # of circuit inputs
- $\rightarrow\,$  We have  $i^2/2$  pairs of vectors with all possible Hamming distances
  - The number of stimuli vectors is reduced
  - SPICE simulation is feasible for relatively small circuits like C3540:
    - \*  $\approx 1000~{\rm gates}$
    - $\ast~50~{\rm inputs}$
    - $\ast~1250$  input vector and power trace pairs



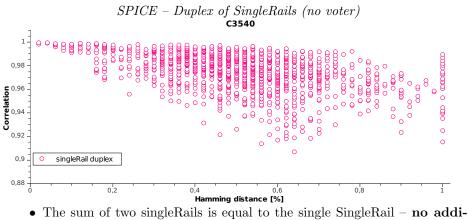



- + Nice graph, looks as expected T-test (and my eyes) says: singleRail is (much) worse than dualRail
- IRSIM gives similar results for TSMC180nm here disagrees with SPICE! (wrong tech. characterization)




• Real measurements – Asynchronous dualRail DES on FPGA




 $\bullet\,$  DualRail layout (TSMC180nm) of the benchmark circuit C3540

+ Precise SPICE simulation looks very similar to measured data! (C3540 is similar to DES)



dualRail

- T-Test (not my eyes here!) says: singleRail is better! (a bit)



• The sum of two singleralis is equal to the single Singlerali – no additional information leakage!

#### Summary

#### Preliminary Results Show Interesting Facts

When no manufacturing variations were taken into account:

- 1 More logic working data-dependently is bad  $\rightarrow$  information leakage is increased
  - both branches of DualRail circuits perform data-dependent computations  $\rightarrow$  balancing becomes extremely important!
- 2 Adding more logic blocks producing exactly the same power traces is OK  $\rightarrow$  NMR will not increase information leakage

### When manufacturing variations will be taken into account, the 2. case will slightly become case 1!

#### Future Work and Challanges

- Is it possible to measure information leakage simpler?
- $\rightarrow$  the area of circuit parts performing data-dependent computations independently
- Is singleRail really better than dualRail in practice? ... No!
- $\rightarrow$  Where are the limits of masking (balancing dual rails)?
- $\rightarrow$  What is the relationship of information leakage and circuit vulnerability?
- $\rightarrow$  Is the attacker's strength estimation without focusing to the particular attack possible?
- There is no (open) efficient and accurate simulator of CMOS producing power traces.

#### Highlights

- The information leakage is proportional to the amount of logic working data-dependently!
- The presented method is able to estimate information leakage (fast open simulator is missing).
- Ideal duplex (no voters!) does not offer additional information to attacker.

#### Acknowledgements

This research has been partially supported by the grant GA16-05179S of the Czech Grant Agency and by CTU grant SGS17/213/OHK3/3T/18.

Computational resources were provided by the CESNET LM2015042 and the CERIT Scientific Cloud LM2015085, provided under the programme "Projects of Large Research, Development, and Innovations Infrastructures".