
Smart re-use of hardware peripherals for better
software UART

Jan Bělohoubek
Faculty of Information Technology

Czech Technical University in Prague
Prague, Czech Republic

jan.belohoubek@fit.cvut.cz

Abstract—In this work, the efficient software implementation
of UART is presented. The efficiency is achieved by using the
microcontroller peripherals intended for the different purpose.

I. INTRODUCTION

Today, microcontrollers are used in wide spectrum of
applications. These are used to control various processes or
in identification devices such as smart cards or key fobs. The
amount of embedded control in different devices still rises.
This caused, that the low-power design of microcontrollers
became very important.

The hardware features and number of peripherals of the
low-power microcontrollers are limited to reduce power con-
sumption. The low-power microcontroller producers offer the
products with the almost identical core and different sets of
peripherals targeted for the specific applications. Such micro-
controllers belong to ASICs (Application Specific integrated
Circuits).

The feature set of ASICs is limited. This applies especially
to low-power ASICs because every additional part of the
chip influences the power consumption. If a new product is
introduced, it is advantageous, if the time on the market is as
longest as possible. To achieve this, new applications of the
product should be found. But new applications may require
features originally not implemented in hardware.

The microcontrollers contain number of GPIO (General-
purpose Input/Output) pins – these can be used to implement
new chip features only by modifying the software. This reduces
both the development and the manufacturing costs such as the
time-to-market.

Unfortunately, the performance of any software imple-
mentation is reduced compared to hardware-supported imple-
mentation especially for low-power/low-performance micro-
controllers. The overall performance of the microcontroller
naturally degrades and the power consumption rises, because
new (potentially sophisticated) tasks are performed.

II. COMMUNICATION PROTOCOLS IN EMBEDDED
SYSTEMS

Today’s systems often contain more collaborating micro-
controllers. Today cars are a good example [1]. If there is an
option, especially in the low-power area, the simplest solution
should be used. This is why the old – traditional – protocols
are very popular.

For the inter-chip communication, serial communication is
advantageous. It reduces number of communication problems
[2].

In single-master, multi-slave systems, the SPI (Serial
Peripheral Interface) is often used [3]. In single-master,
multi-slave or multi-master, multi-slave systems I2C (Inter-
Integrated Circuit) bus is widely used. For point-to point
connections, years ago, UART (Universal Asynchronous Re-
ceiver/Transmitter) (RS-232) became de facto standard for
communication between embedded systems and personal com-
puters [2], [4].

Even if the RS-232 port has been replaced by the USB
(Universal Serial Bus) port in today computers, UART is
still prioritized in a wide spectrum of applications because
of its simplicity. To connect a microcontroller with the UART
interface into today’s PCs equipped with USB ports, RS-232
to USB converters are available [5]. For devices using different
voltage levels, simple level shifters may be used.

As denoted above, a low-power embedded system should
not have a huge amount of different communication interfaces.
If some unavailable communication protocols are required,
they must be implemented (at least) partly in software. In this
paper, an efficient software implementation of UART interface
will be presented. The key idea is to effectively use available
hardware peripherals to emulate UART behaviour.

A. SPI/UART point-to-point configuration comparison

UART (RS-232) uses at least two signals. One is used
for data transmission (Tx), another (Rx) for reception. When
no data transmitted, the signal remains in the mark condition
(logic 1). The transmission is initialized by the START bit
with an inverted polarity compared to the mark condition. The
start bit is used to synchronize the receiver. After the start
bit, the defined number of data bits is transmitted and the
transmission is finished by the STOP bit. The clock precision
of transmitter and receiver must be sufficient to keep the clock
synchronization in the interval between the start and stop bit.
See Figure 1.

Rx/Tx START LSB 1 n-2 P/n-1 STOP

Fig. 1. UART transmission example. Mark condition value is equal to
logic 1. Transmission starts with START bit (0), after n bits, STOP bit
(1) is transmitted. The last data bit (n-1) often serves as parity. After the
transmission is finished, the signal remains in mark condition (value 1).



SPI is a synchronous master-slave protocol. The transmis-
sion is initialized by the master. At least three signals are used
– two data signals and a clock signal. The master generates
the clock signal (SCL). Data from the master are transmitted
to the slave using the signal denoted MOSI and data from the
slave to the master using the signal MISO at the same time.
The signal values are changed with a selected (rising or falling)
edge of the clock signal and sensed with the other edge. See
Figure 2.

SCL

MOSI MSB(k-1) LSB(k) 1(k) 2(k) 3(k) 4(k) 5(k) 6(k) MSB(k)

MISO LSB(k-1) 1(k) 2(k) 3(k) 4(k) 5(k) 6(k) MSB(k)

Fig. 2. SPI data transmission example – 8 bits, LSB first. Master reads
incoming data on the rising edge and slave on the falling edge. Clock signal
returns to zero after transmission is finished. Different transmission schemes
are possible while the principle remains.

The total number of transmitted bits in UART is the number
of data bits plus 2, compared to SPI, where only data bits are
transmitted. The typical number of data bits for both interfaces
is 8 (for UART ASCII terminals 7 bits are often).

Because SPI is a synchronous protocol, it requires the clock
signal generated by the master and transmitted to the slave.
Additionally, communication can be initialized only by the
master (the slave can request data transfer by using a dedicated
signal). On the other hand, UART receiver is synchronized
by the start bit. Both sites can initialize the communication.
Both protocols allow full-duplex communication – data are
transmitted using dedicated signals in both directions. Another
difference is that UART works in the return-to-zero mode –
the mark condition value is held on data signals, when no
transmission is in progress. In SPI, the value on data signals
is not defined when the clock signal is inactive – usually the
value of the last transmitted bit is present. The interconnect
configuration distinctions are shown in Figure 3.

Rx

Tx Tx

Rx

UART

SPI

SCL

MOSI

MISO

SCL

MOSI

MISO

SPI master SPI slave

Fig. 3. SPI and UART configuration for point-to-point communication.

III. TRADITIONAL SOFTWARE UART IMPLEMENTATIONS

In this section, the most common approaches used to im-
plement UART in software will be described. The description
is intentionally brief because UART implementations are com-
mon, e.g. [6], [7], etc. The excessive details are suppressed.
Techniques combinations are possible.

The synchronization is performed at the beginning of the
transaction and it must be kept until STOP bit is received. To
realize successful communication, the UART clock deviation
during transmission and reception must be minimized on both
sides (receiver and transmitter). This usually requires to disable
(subset of) interrupts depending on selected baud rate and the
microcontroller performance. This may not be necessary, if the
highest-priority interrupts are used.

It is assumed, that two GPIOs are used as Rx and Tx
pin. Although periodical signal sampling may be used, using
interrupts is usually advantageous and helps to increase the
performance.

If the reception is implemented by using ISRs, the baud-
rate is additionally limited by ISR (Interrupt service routine)
invocation and execution time. The interrupt must be invoked
and processed when the START bit is transmitted (at worst, it
must be finished during the first data bit transmission).

Full-duplex communication is a complicated task
for the software-implemented UART. Concurrent
transmission/reception is simpler to realize, when data
for the transmission is ready before START bit is received.
The transmission is then performed during data reception
initiated by the other communicating side.

A. Instruction-counting-based techniques

Instruction counting allows to achieve relatively high trans-
mission speed. The transmission speed is only limited by the
ability of microcontroller to switch values at the output (Tx)
pin. If lower baud-rates are used, instruction-counting-based
delay is used to achieve the defined period. This mostly means,
that the microcontroller performs no beneficial actions (NOP
instructions). Instruction-counting-based delay can be also
introduced to achieve a defined delay between the sampling
of data bits.

Assembly language implementation is generally required,
especially when higher baud-rates are used (accurate number
of instructions must be used during every period). Not required
interrupts should be prohibited during both transmission and
reception, especially when baud rate is high compared to
microcontroller clock-speed.

Instruction counting is not very flexible. Changing the baud
rate may require much afford. Still, instruction-counting-based
techniques may be used to introduce shorter delays anywhere
needed.

B. Timer-based techniques

The software-based UART clock is derived from a timer.
The timer interrupts are generated periodically according to the
selected baud rate. The data are received/transmitted bit-by-bit
during consecutive ISRs.

Assembly language implementation is not necessarily re-
quired. The reachable baud rate is limited by ISR invocation
and execution time. Other than timer interrupts should be
disabled during transmission/reception.

A timer offers more flexibility than instruction counting
when changing the baud rates.



IV. PROPOSED UART IMPLEMENTATION

In this paper, efficient software-based, hardware-supported
UART implementation, called SPIUART, is presented. The
core idea is to use existing microcontroller peripherals to
emulate UART. In the following lines it will be presented
how to efficiently implement UART using an available SPI
interface.

Similarities and distinctions between SPI and UART were
briefly described in II-A. In the following lines, 8-bit SPI
interface is assumed. Both communicating sites can be com-
munication initiators when UART is used. This implies that the
SPI interface emulating UART must be set to master mode. In
SPIUART, the SPI pin directions are preserved. The MOSI pin
represents the UART Tx pin and the MISO pin represents the
UART Rx pin – see Figure 4.

SCL

MOSI

MISO

Rx

Tx

SPIUART
(SPI master)

RS-232/USB
converter

Fig. 4. Proposed configuration for point-to-point communication.

If SPI is implemented using 8-bit shift register, at most
8-bits can be transmitted. The comparison noted above implies
that two bits (the first and the last) in the UART transmission
have a special meaning – the START and STOP bit. For the
transmission, the SPI shift register must be configured in such
a way to transmit at first the START bit, then 6 data bits and
finally the STOP bit. This implies that SPIUART can be used
to transmit 6 data bits. If the receiver is configured to receive
more than 6 data bits, STOP bit values are received.

The data reception has to be implemented as follows: The
interrupt must be configured to the edge of the START bit.
When START bit is detected, ISR is executed. In the ISR, the
MOSI register is filled in by 8 STOP bits and SPI transaction
is initialized. During the reception of 8 bits (Rx), the parallel
transmission of 8 STOP bits is performed. It preserves the
mark condition value at the Tx pin (constant mark condition
value means no transmission). STOP bits are shifted to the
MOSI line while the bits from the MISO line are shifted into
the input SPI register.

Up to 8 bits can be received using SPI interface, if the first
received bit is the bit following the START bit and the STOP
bit is not considered.

The full-duplex communication is possible in a limited
way. During the reception, transmission can be realized if
START, STOP and 6 data bits are loaded into the MOSI register
instead of the 8 STOP bits. The duplex communication must
be initialized by the full-featured UART interface.

The resulting implementation is the (limited) full-duplex
UART. The data bit length is up to 8 (up to 6 data bits can
be transmitted and up to 8 data bits can be received). No flow
control signals are considered.

Note that it is possible to transmit 8 data bits using SPI
interface if new data can be loaded into the MOSI shift
register after actual content is transmitted. However this brings
additional timing requirements and it is also not considered
advantageous.

V. EXPERIMENTAL RESULTS

Proprietary microcontroller of EM Microelectronic-Marin
SA based on CoolRISC core has been used for experiments.

A. Used microcontroller characteristics

The detailed information about the microcontroller used
for experiments are confidential. Yet very similar products
offered by EM Microelectronic-Marin SA for general purpose
are EM6812 [8] or EM6819 [9].

The microcontroller is equipped with 10 freely pro-
grammable I/Os. It has an adjustable RC oscillator with
frequency range up to 10MHz. Its 8-bit RISC architecture
is designed for very low power consumption. With 2 clocks
per instruction, the used microcontroller executes up to 5
MIPS at 10 MHz. The instruction word length is 22 bits
and the available program memory allows to store up to 16k
instructions (44 kB Flash memory). 512 bytes of on-chip
static RAM is available. For more details about CoolRISC,
see EM6812 datasheet [8].

B. SPIUART implementation

The solution proposed in IV was successfully implemented
for the mentioned microcontroller. The implementation was
completely realised in C programming language without any
assembly construction. The standard tools and the development
kit supplied by the manufacturer including GCC 4 based C
compiler were used.

As described in IV, SPI interface is in the master mode.
Transmission is performed as a regular SPI transaction with
fixed 2 (START and STOP) of 8 transmitted bits. The reception
is started from ISR after the start bit is detected (falling edge
on MISO). The end of both transactions is detected by end of
SPI transmission interrupt.

The SPI clock is generated using integrated PWM (Pulse
Width Modulation). Usage of PWM allows simple modification
of the baud rate up to 9600. This is the limit baud rate for the
used microcontroller. The time constraint is composed from
the time required for the START bit detection and from the
SPI start-up procedure.

As noted in section IV, up to 6 valid data bits can be
transmitted and up to 8 data bits can be received. One can ask
how to configure the other side interconnected with SPIUART.
Complete symmetry is achieved, if 6 data bits are used for
both transmission and reception. To maximize the data rate in
direction to SPIUART, 8 bit length should be used.

If 7 data bits are considered, the MSB is always 1 during
transmission from SPIUART. If ASCII terminal is used, almost
all received data are displayed as readable characters (exclud-
ing 0x7F). SPIUART is able to receive up to 8 data bits –
accepting only 7 valid data bits is not any problem at all (bit
masking is a simple operation in software). This behaviour can



EM68xx softUART SPIUART FS1 SPIUART FS2
Transmission bit length 8 6 6
Reception bit length 8 8 7
Baud rate [bit/s] fixed 2400 up to 9600 up to 9600
Total number of ISRs executed during transmission 9 1 1
Number of ISRs executed during transmission per data bit 1,125 0,167 0,167
Total number of ISRs executed during reception 10 2 2
Number of ISRs executed during reception per data bit 1,250 0,250 0,286
C code including preprocessor directives up to 140 lines up to 250 lines up to 300 lines
Assembly language equivalent 240 lines 127 lines 625 lines
Number of instructions 972 504 2496
Used programme memory 6% 3% 16%
Number of NOP instructions 87 0 0
Instructions in ISRs 656 268 268
The share of instructions in ISRs 67% 53% 11%
Used I/O PINs 2 3 3

TABLE I. SOFTWARE UART IMPLEMENTATIONS COMPARISON.

be advantageous for debugging. This is why 7 is considered
to be a good choice.

Two feature sets were implemented. The first feature set
(denoted FS1) allows only transmission of 6 data bits and
the reception of up to 8 data bits. In the second feature
set (denoted FS2), additional functionality is included. This
feature set includes functions for sending byte arrays in 6-bit
words and receiving byte arrays in 7-bit words. Transmissions
are secured using one parity bit for every word or for the
transmitted array1.

The number of I/O pins occupied by the proposed imple-
mentation is 3. Used pins are Rx (MISO), Tx (MOSI) and SCL,
which is not necessary for UART but it remains occupied while
the SPI peripheral is in master mode.

Interrupts should be inhibited only when higher baud rate
is used and START bit is expected. After the SPI transaction
is started, interrupts can be permitted immediately.

Both the feature sets were compared to the implementation
of software UART supplied by EM Microelectronic-Marin SA
for EM68xx device family [10] (it is implemented similarly
to III-B). This implementation is functionally comparable to
FS1. The results of this comparison are in Table I.

VI. CONCLUSIONS

The proposed software implementation of UART exploits
the available microcontroller features. It is presented, that
reusing hardware intended for the different purpose can be
more efficient than full software implementation even if some
nice properties of emulated hardware were sacrificed (data
bit length symmetry for transmission and reception). In the
resultant implementation, the number of ISR calls is reduced.
The baud rate is relatively high while interrupts are permitted
during transactions.

1For the full-featured communication with SPIUART FS2 from Windows-
based PC station, basic C library was implemented.

ACKNOWLEDGMENT

The author would like to thank to ASICentrum s r.o. for the
provided hardware and the helpful cooperation. This work has
been in part supported by CTU grant SGS15/119/OHK3/1T/18.

REFERENCES

[1] EM Microelectronic-Marin SA, “Automotive,”
http://www.emmicroelectronic.com/applications/automotive-0, 2014.

[2] A. S. Tanenbaum, Structured Computer Organization., 5th ed. Pearson
Education, 2007.

[3] Martin Schwerdtfeger, “SPI – Serial Peripheral Interface,”
http://www.mct.net/faq/spi.html, 2006.

[4] Christopher E. Strangio, CAMI Research Inc., Ac-
ton, Massachusetts, “The RS232 STANDARD,”
http://www.camiresearch.com/Data Com Basics/RS232 standard.html,
2015.

[5] FT230X (USB to BASIC UART IC), Future Technology Devices Inter-
national Ltd., 2 2015, version 1.3.

[6] “Implementation of a software uart on tms320c54x using general-
purpose i/o pins,” Texas Instruments, 7 1999, application Report,
SPRA555.

[7] Prashant Mehta, “Software UART – UART stack im-
plemented in C for uNiBoard v1.1 (ATmega128),”
https://code.google.com/p/uniboard/wiki/Software UART, 2010.

[8] EM6812, EM Microelectronic-Marin SA, 5 2005, rev. E.
[9] EM6819Fx-A00x, EM6819Fx-A10x, EM6819Fx-B00x, EM6819Fx-

B10x, EM Microelectronic-Marin SA, 10 2014, version 9.2.
[10] EM Microelectronic-Marin SA, “EM6812 Downloads,”

http://www.emmicroelectronic.com/products/microcontrollers/multi-
io/em6812#node prod full group downloads, 2004.


