
POSTER 2015, PRAGUE MAY 14 1

Novel Gate Design Method for Short-Duration Test

Jan Bělohoubek

Dept. of Digital Design, Faculty of Information Technology, Czech Technical University in Prague, Prague, Czech Republic

jan.belohoubek@fit.cvut.cz

Abstract. In this paper, a novel logic gate design method
will be presented. This method allows to test combina-
tional parts of the circuit using a short-duration offline test.
Short-duration offline tests are usable when fault-recovery
in duplex-based systems is required and downtime should be
minimized at the same time. The presented method adopts
some principles from dual-rail logic and asynchronous cir-
cuits design.

Keywords
Offline-test, C-element, dual-rail logic, preset, testabi-
lity, controlability, observability.

1. Introduction
As digital systems are becoming more complex, tech-

nology scales down and new applications in challenging en-
vironments are continuously developed, pressure to digital
systems dependability still rises. In the past years, there
were developed many techniques to build dependable sys-
tems while saving resources.

A dependable system is able to correct physical fault
consequences to prevent system failure.

In the literature, different fault types are described.
These are permanent faults, (long and short duration) tran-
sient faults and intermittent faults [1].

More models can be used for fault modeling in digi-
tal circuits such as open and short faults or bridging faults.
In this paper, a stuck-at-fault model for permanent faults is
used.

Methods for construction of dependable systems are
based on redundancy – area redundancy (hardware dupli-
cation), time redundancy (recomputation, software redun-
dancy), or information redundancy (coding). Short-duration
transient faults can be well detected (and corrected) using
time redundancy, while area redundancy is used for long-
duration transient faults and permanent faults. For intermit-
tent faults it depends on their behaviour.

In the area redundancy, duplex systems may be used for
error detection. Duplexes are created by duplicating func-

tional modules and adding a checker, which signalizes data
validity using a dedicated signal (this signal is in ERROR or
OK state). TMR systems based on module triplication and
voters are used for error correction [1].

The goal of this work is to develop a method which will
allow to use a duplex scheme to correct detected errors. In
the past, this was done in two different ways.

The first possibility is using of self-checking modules
[2], [3]. If self-checking approach is used, at least one of the
modules in error-correcting duplex must be self-checking.
The second possibility is offline testing.

The main disadvantage of self-checking modules is the
area overhead. On the other hand, offline tests are usually
time consuming or/and have not reasonable fault-coverage.
The disadvantages are following: the downtime1 is too long
and fault-recovery may be impossible. In this paper a new
method to design short-duration offline tests with 100%
gate-level stuck-at-fault coverage will be presented.

2. Stuck-at-fault observability and con-
trolability

In this section, fault observability and controlability
will be discussed. Stuck-at-fault model will be considered.

To design short-duration tests with reasonable fault-
coverage, testing of all faults by only few test vectors is re-
quired. Very simple test vectors all-zero or all-one
are used. When applying these input vectors, observing
similarly simple output vectors is the advantage (ideally the
same vectors in case of fault-free circuit). Detection of all
possible faults is required at the same time.

When using AND-OR based logic and simple vectors
described above, OR gates tend to mask s@0 faults and AND
gates to mask s@1 faults. Meeting both requirements is pos-
sible when symmetric elements are used. Note that the re-
quirement for simple output values can be disturbed by usage
of inverters – the circuit must be monotonic.

Thanks to the reconfiguration ability, similarly short
tests are feasible on FPGAs [4] configuring FPGA LUTs as

1Time when the circuit is not operational because the offline-test is in
progress.



2 Jan Bělohoubek, Novel Gate Design Method for Short-Duration Test

XORs and NXORs. Time-consuming full circuit reconfigu-
ration is required to perform these tests.

In common logic circuits, both controlability and fault-
observability are very difficult tasks. Testing all possible
faults implies large tests with a huge amount of test-vectors.
Moreover, some faults can be untestable because of the re-
convergence [5]. The mentioned XOR gates are very sensi-
tive to reconvergence.

This work exploits fault-observability and fault-
controlability in another type of circuits, where all gate-level
faults are observable independently of the reconvergence.
The next advantage is that all gate-level multiple faults are
also detected. These circuits can be tested using very sim-
ple test vectors as denoted above. The proposed circuits are
completely based on C-elements, which are extensively used
by designers of asynchronous systems [6]. C-elements are
symmetric and state-holding. As will be described in this pa-
per, state-holding C-elements could realize monotonic logic
gates. Inverter problem solution will be described in sec-
tion 3.

2.1. Fault-observability and C-element

Probably the most commonly used implementation of
C-element is a semi-static C-element (see Figure 1). An-
other interesting implementation is a dynamic C-element.
The structure of the dynamic C-element differs from semi-
static C-element only in the absence of the weak inverter.

Z

A

B
weak

A B C
0
0
1
1

0
1
0
1

0
C
C
1

C
n1

n2

n3 n4

n8

n7n5

n6

Fig. 1. Semi-static C-element implementation, symbol and truth
table.

C-element is symmetric and state-holding. As ex-
plained in further text, this property in fact allows to test
C-element nets for both: s@0 and s@1 faults.

Assume a circuit composed of interconnected C-
elements only. At first, a test at the gate level will be de-
scribed. When all inputs of this C-element-based circuit are
set to 0, after all transitions are finished, outputs of all C-
elements are 0 (including circuit outputs). At this moment,
when all inputs of such a circuit will be changed to 1, out-
puts of all C-elements should switch to 1. But if there is a
s@0 fault present, then the respective C-element output will

hold 0 and this value is propagated along the whole path to
the circuit outputs – the fault is observable.

Similarly, s@1 faults can be observed. Fault presence
prohibits C-element transitions on the path from the fault to
the circuit outputs. This implies that all stuck-at-faults are
testable in the C-element-based circuit. The gate-level test
has 100% fault-coverage.

Now we will shortly describe faults at the transistor
level [8]. In Figure 1, 8 signals are denoted (n1 – n8). For
simplicity we will assume only those faults that take effect in
all forks of the signal. Both – s@0 and s@1 – at denoted sig-
nals are testable in the C-element. All faults except of s@1 at
signal n1 and s@0 at signal n2 are covered by gate-level test
described above. Testing of the uncovered transistor-level
faults will be discussed later.

3. Proposed gates
As described in Section 2, a circuit containing the

C-elements only has good fault-observability and fault-
controlability properties. It will be described in this section,
how regular logic gates can be constructed using C-elements
only. To achieve this, dual-rail logic will be used.

3.1. Dual-rail logic

In general, dual-rail logic uses two complement signals
to transfer one logic value. Dual-rail quasi-delay insensi-
tive (QDI) is a design style widely used in the asynchronous
design area.

Traditional AND and OR gates are used in QDI. The
states of the signals in QDI are interpreted as follows:

00 – spacer

10 – logic one

01 – logic zero

11 – erroneous state

Before the computation, all inputs are preset to 00 in
QDI. This causes that values on all gate outputs in the circuit
are set to 0. The transitions from 00 to 01 or to 10 are used
for completion detection (11 can be used for error detection
[2]).

Two phases are also regularly switching: the preset
phase (preset to 00) and the computational phase (transition
to 01 or 10). Note that dual-rail logic with complementary
signals allows to implement NOT function as a wire-swap
only.



POSTER 2015, PRAGUE MAY 14 3

3.2. Gate levels

In the following text we will use terms gate level and
circuit depth. The level is the maximal distance from the
circuit inputs. For gates connected to circuit inputs we define
their level to be 1. The level of the n-input gate G is:

lG = max{l0, l1, . . . , ln−1}+ 1 (1)

where li is the level of the gate connected to i-th input of the
gate G. The circuit depth of a k-output circuit C is:

dC = max{l0, l1, . . . , lk−1} (2)

where li is the level of the gate connected to the i-th circuit
output.

3.3. Generalized C-element

In Figure 2 you can see the structure of a general-
ized C-element. A generalized C-element is similar to the
C-element presented before [6]. In generalized C-element,
there are two driving MOS nets i.e. N-MOS and P-MOS de-
noted N and P respectively. Both may implement any mean-
ingful function created by using P-type or N-type transistors
respectively [7].

C

P

N

weak

Fig. 2. Generalized C-element. The memory element is driven
by N-MOS and P-MOS nets connected to VCC and
GND respectively.

3.4. Generalized C-element based dual-rail
gates

Combining properties of previously described ap-
proaches, C-element-based regular logic gates can be cre-
ated. Next lines will describe how to construct dual-rail
AND/NAND gates. Dual-rail gates are dual structures. Both
functions (AND and NAND) are implemented using the same
AND/NAND structure with inverted output signal meaning.
Dual-rail logic with complementary signals will be used be-
cause monotonic behaviour is required. Dual-rail OR/NOR
gates can be also created similarly using the proposed tran-
sistor structures. Implementation of XOR gates is not pos-
sible because XOR is not monotonic and thus it cannot be
implemented using the state holding C-element.

In QDI, preset phase is driven by a special – spacer
(00) – value on circuit inputs. To implement dual-rail gates
using C-elements only, we need to preset some C-elements
to 1 and the other to 0. Therefore we need a special preset
signal for each C-element.

As illustrated in Figure 3, AND/NAND gate can be cre-
ated by using two C-elements with a preset signal. The first
C-element is in preset phase (using signal P) preset to 0 and
holds this value while at least one of the inputs stays 0. In-
put signal transitions are performed during the preset phase.
If both inputs are 1, output will change to 1 in the compu-
tational phase. This behaviour corresponds to the AND gate.
For the second C-element, there are similar assumptions: it
is preset to 1 and this value persists on the output while at
least one input is 1 – this is obviously a NAND gate when
assuming that inputs of the C-element are inverted.

Combinational circuits can be constructed using these
gates. Every gate in these circuits works in two phases. Both
phases are also illustrated in Figure 3. When the signal P is
asserted, the preset phase is running – C-elements are pre-
set to the specified value. All transitions on input signals A
and B should finish during this phase. In the second phase
inputs will be evaluated and the outputs of both C-elements
will stabilise in correct states corresponding to the dual-rail
AND/NAND behaviour.

P C

C

C

AA BB
AB~AND

AB~NAND

P

P = 0

P = 1

AB

A

B
weak

P

AB

A

B
weak

Fig. 3. Dual-rail AND/NAND gate implemented using two gen-
eralized C-elements (with preset) and state transition di-
agram for gate-operating phases (P ∼ preset; C ∼ com-
putation).

The CMOS implementation in Figure 3 demonstrates
the behaviour of the gate implemented using C-elements
with preset. A gate implemented this way has not a good
controlability and it is not possible to test all mentioned
faults. In Figure 4, the complete proposed AND/NAND gate
is shown. Additional signals (compared to Figure 3) bring
symmetry into the gate design and increase the gate contro-
lability. Test signals T1 and T2 and input-enable signals E1

and E2 will be described in the following lines. During nor-
mal operation (preset and computational phases): Pi = Ei

and T1 = 1 and T2 = 0.

In preset phase:
P1 = E1 = T1 = 1 and P2 = E2 = T2 = 0.

In computational phase:
P1 = E1 = 0, T1 = 1, P2 = E2 = 1 and T2 = 0.



4 Jan Bělohoubek, Novel Gate Design Method for Short-Duration Test

AB

A

B
weak

P

AB

A

B
weak

PT TE E 222111

Fig. 4. Dual-rail AND/NAND gate implementation with preset.
Signals E1 and E2 are input enable signals and signals
T1, T2 are only for test reasons.

3.5. Testability of proposed gates

Additional signals (Pi, Ti and Ei) improve symmetry
and controlability compared to the C-element described in
2.1.

Stuck-at-faults on inputs A, B, A and B and on enable
signals E1 and E2 can be tested the same way as described
for the semi-static C-element in 2.1 conditioned that preset
signals are inactive (i.e. P1 = 0, P2 = 1, T1 = 1 and
T2 = 0). To test all faults, the process of the test must be
following: at first 0 should be set to all circuit inputs and en-
able signals, then all inputs and enable signals should be set
to 1, and finally back to 0. The delay between value changes
should be equal to the circuit propagation time. Values 0, 1
and 0 will be observed on all circuit outputs if the circuit is
fault-free. When a fault is detected during this test, it will
be distinguished as an inverted value on the affected outputs.
Denote this test test No. 1.

But additionally, there is a need to test at least the preset
function (signals P1 and P2) of every gate. Complementary
signals T1 and T2 are necessary because they bring symme-
try into complementary gates and allow full-testability.

s@1

s@0

Fig. 5. Faults difficult to test in proposed C-element.

Additionally faults shown in Figure 5 can be observed
only if input signals and input enable signals differ.

All remaining s@0 and s@1 faults (not tested in test
No. 1) can be observed during the topological wave test.
The wave test progress for the whole circuit is as follows: in
the first phase – all preset (and test) signals are set to inactive
state and all circuit inputs and enable signals are set to 0 –
this value is then propagated to the circuit outputs (note, that
this phase is identical to the last phase of the test No. 1).

After the first phase is finished, for gates in level 1 en-
able signals E1 and E2 stay 0. For the other gates, E1 and
E2 are set to 1. Then all circuit inputs are set to 1. This
will allow value 1 propagation in the whole circuit. If s@0
is present, the path from this fault to the affected outputs will
hold the value 0. Gates in level 1 stay intact because they are
set to be sensitive only for zeroes on the inputs.

At this moment (borderline between t4 and t5 in Figure
6), the output vector of the circuit should be compared with
the expected response – zeroes should be only on the outputs
connected to gates in level 1. This will allow to detect some
faults from Figure 5 depending on the circuit structure2. Nat-
urally, this moment should be extended to a time-interval of
the reasonable length.

When propagation paths are prepared, gates in level 1
are preset to 1 using preset signals P1 and T2. After circuit-
propagation delay, value 1 should appear on every circuit
output. If the value 0 preserves, a fault has been detected.

INPUTS 0 ... 00/1 ... 0/1

P

P

T

T

E

E

1 ... 1 0 ... 0

OUTPUTS 0 ... 00/1 ... 0/1 1 ... 1 0 ... 0

2

2

2

1

1

1

test nr. 1

control sig
nals

level i
level j =

 i

P

P

T

T

E

E2

2

2

1

1

1

1 ... 1

1 ... 1

test nr. 2 - level i
test nr. 2 - phase 1

test nr. 2

t1

t2

t3

t4

t5

Fig. 6. Test progress for test No. 1 followed by first phase of
test No. 2 and i-th level-test (first phase of test No. 2 and
i-th level-test alternate until all levels are tested). Delay
denoted t1 is the minimal circuit propagation time, t2
is maximal circuit propagation time, t3 is the minimal
propagation time from circuit inputs to circuit outputs
when gates in level i are inactive, t4 is the maximal prop-
agation time from circuit inputs to gate inputs in level i
and t5 is the maximal propagation time from gates on
level i.

2To detect all mentioned faults, gate levels must be divided to sub-
levels. Each circuit output is connected to max. 1 gate from the given
sub-level. The test is then not level-based but also sub-level-based – replace
any ”level” term in the text by the ”sub-level” term.



POSTER 2015, PRAGUE MAY 14 5

After the test of all gates in the first level is done, gates
in another levels are tested in topological order in the same
way:

At first all Ei signals in all gates and circuit inputs are
set to 0. Then Ei signals for all gates except of gates on
the tested level and circuit inputs will be set to 1 and finally,
signals P1 and T2 in gates on the tested level will be set to 1.
After the propagation delay a fault or the correct value can
be observed on every circuit output.

The test will proceed in this order until gates in all lev-
els are tested. On the circuit outputs, values 0 and 1 should
switch regularly in well defined time intervals and with de-
lays based on gate depths. This test will be denoted as test
No. 2.

After the whole test No. 2 is finished (all circuit levels
were tested), another test should be done for signals P2 and
T1 analogously. Setting circuit inputs to 1 and presetting to
the value 0 will be performed during this test. The last test
will be denoted as test No. 3.

By concatenating all the tests – test No. 1, test No. 2
and test No. 3 – the complete test is designed. Our complete
test is able to detect all faults described above.

As it can be deduced from previous lines, the test has
the initial part, which is the same for every circuit, but ad-
ditionally the test duration depends primarily on the cir-
cuit depth (the number of gate levels). Thus smaller circuit
depths are advantageous. The test length is approximately:

(2 + (2 · 2k)) · tp, (3)

where k is the circuit depth and tp is the circuit propagation
time.

4. Conclusions
New method for logic gate design was presented. The

proposed method allows short-duration offline testing of cir-
cuits composed of these gates. Fault controlability and
observability properties were discussed and complete test
progress was presented.

Acknowledgements
This research has been in part supported by CTU grant

SGS15/119/OHK3/1T/18. This work was supervised by
Prof. P. Fišer, FIT CTU in Prague and Dr. J. Schmidt, FIT
CTU in Prague.

References
[1] I. Koren and C. M. Krishna, Fault-Tolerant Systems. San Francisco,

CA, USA: Morgan Kaufmann Publishers Inc., 2007.

[2] I. David, R. Ginosar, and M. Yoeli, “Self-timed is self-checking,”
Journal of Electronic Testing, vol. 6, no. 2, pp. 219–228, 1995.
[Online]. Available: http://dx.doi.org/10.1007/BF00993088

[3] J. Ruan, Z. Wang, K. Dai, and Y. Li, “Design and test of self-checking
asynchronous control circuit,” in Integrated Circuit and System Design.
Power and Timing Modeling, Optimization and Simulation, ser. Lec-
ture Notes in Computer Science, N. Azémard and L. Svensson, Eds.
Springer Berlin Heidelberg, 2007, vol. 4644, pp. 320–329.

[4] M. Renovell, J. Portal, J. Figuras, and Y. Zorian, “Minimizing the num-
ber of test configurations for different fpga families,” in Test Sympo-
sium, 1999. (ATS ’99) Proceedings. Eighth Asian, 1999, pp. 363–368.

[5] L. Biwei, C. Shuming, and H. Xiao, “Analysis of glitch reconvergence
in combinational logic ser estimation,” in Modeling Simulation, 2008.
AICMS 08. Second Asia International Conference on, May 2008, pp.
1015–1020.

[6] J. Sparsø and S. Furber, Principles of Asynchronous Circuit Design: A
Systems Perspective, 1st ed. Kluwer Academic Publishers, Boston,
2001.

[7] D. Thompson, “Improved c-element and logic reduc-
tion and completion detection circuits,” Jan. 12 2006,
wO Patent App. PCT/GB2005/002,412. [Online]. Available:
http://www.google.com/patents/WO2006003368A2?cl=en

[8] J. Brzozowski and K. Raahemifar, “Testing c-elements is not ele-
mentary,” in Asynchronous Design Methodologies, 1995. Proceedings.,
Second Working Conference on, May 1995, pp. 150–159.

About Authors. . .

Jan BĚLOHOUBEK was born in 1990 in Pilsen. He re-
ceived the bachelor’s degree in Computer Engineering at
University of West Bohemia in Pilsen. The master’s de-
gree he received in Digital System Design at Czech Tech-
nical University in Prague. Today he is in the 1st year of
Ph.D. programme at Faculty of Information Technology at
the same university.


