
KETCube – the Universal Prototyping IoT Platform

Jan Bělohoubek, Jiřı́ Čengery, Jaroslav Freisleben, Petr Kašpar and Aleš Hamáček
Faculty of Electrical Engineering

University of West Bohemia in Pilsen
Pilsen, Czech Republic

{belohoub, cengery5, jafre, petrx, hamacek}@ket.zcu.cz

Abstract—The IoT (Internet of Things) devices continue to
penetrate into new areas of our daily lives as well as indus-
try. The evolution of IoT devices comes with the necessity of
operation in heterogeneous environments. This evolution brings
new challenges in the areas of R&D and education. We identify
important features beneficial for R&D engineers as well as
for educationalists and students and we propose a novel open
platform for rapid development of IoT nodes. This platform is
easy to employ in the educational process at the same time.

I. MOTIVATION

The predictions show, that within the next decade, over a
trillion new sensors will be deployed per year [1]. Additionally,
the so called IoT (Internet of Things) devices continuously
appear in new contexts and new application areas. The growing
IoT sector powers the so called Fourth Industrial Revolution
or Smart anything/everything initiatives like Smart Cities and
Smart Farming [1], [2].

The continuous and fast movement in the application area
stimulates the progress in many fields – IoT LPWAN (Low
Power Wide Area Network) standardization efforts [3], in-
frastructure efforts like LoRaWAN, Sigfox, NB-IoT and many
more [3], [4]. Development of novel sensors [1] and LPWAN
nodes or the continuously growing area of so-called “big data”
processing [5] and control [6].

As the IoT field in general is very heterogeneous [3],
developers of physical devices enjoy not only the advantages
of the heterogeneity, but they also face many challenges.
Although the heterogeneity is positive for developers’ free-
dom to choose the best solution for a particular problem, it
represents a great challenge when device is deployed. One
of the significant challenges for IoT nodes is the (in)ability
to gain the profit coming from overlapping networks based
on different communication standards [4]. It is an serious
challenge especially for LPWAN nodes, targeted on multi-
region usage independently of the LPWAN network with the
best coverage in a particular region.

Given the heterogeneity, it is simple to imagine, that a
single IoT device project moves through a support of multiple
networks even during different development stages: point-to-
point wireless links can be used in a technology demonstrator
phase, another network can be used for prototyping and
validation and additional networks should be supported when
deployed. This enforces the repetition of a validation phase
and makes the overall process much more complicated and
time-consuming.

Another challenge coming from the developing IoT area is
connected with the technical education [7]. Educationalists all-
around the world face the problem how to introduce students
to IoT world without missing any important technology while
providing detailed technical insight at the same time.

In many classes all-around the world, the Arduino R© plat-
form is used by educationalists as the main hardware platform
for low power and low performance nodes [7]. As Arduino R©

is the first choice for beginners coming with number of
advantages following the diversity of IoT world, it also has
significant disadvantages. The important disadvantage from
the educational point of view is that the simplicity and the
number of simple HowTos and libraries (of varying quality)
do not stimulate the student’s personal knowledge progress and
insight.

According to our experience, when Arduino R© is used,
students are able to design an operational device very fast.
Unfortunately, they often don’t understand what the device
really does, how to optimize the device’s power consump-
tion, what is the difference between I2C and SPI etc. Here,
the simplicity of Arduino R© makes it harder to get insight.
Additionally, the usage of Arduino R© does not stimulate the
ability to understand the industry-level style of documentation
– datasheets or application notes. Students often tend to follow
short HowTos and step-by-step guides of varying quality.

On the other hand, if the class is concentrated on data pro-
cessing only, IoT nodes can be seen as black-boxes producing
data. Similarly, if students develop sensor elements, IoT nodes
would be used e.g. as analog-to-digital converters equipped
with a network interface. Based on these use cases, one would
appreciate not to waste time with Arduino R© programming and
debugging – a platform even simpler than Arduino R© (from
a user’s perspective), if available, would do the job more
efficiently.

As described above, there is a room for a platform fulfilling
the following criteria: (i) support for multiple LPWANs, (ii)
unified and modular approach to sensor and actuator elements
enabling rapid prototyping, (iii) to be validated once and de-
ployed to different environments, (iv) an open source approach
enabling the most effective educational usage, (v) easy to use at
a user-level (configuration tools and user-level documentation)
and at a developer-level (documentation, open-source), (vi)
high-quality, an industrial-level documentation enabling both:
educational and commercial use.

The rest of the paper is organized as follows: in Section
II, we describe the novel educational and prototyping platform



for IoT developed at the University of West Bohemia in Pilsen
fulfilling the mentioned criteria. In Section III, several use
cases are described. In Section V, we present the current plans
and future work. The paper is enclosed by Conclusions in
Section IV.

II. KETCUBE PLATFORM

Based on the IoT design and educational experience of our
team, we decided to release the new prototyping and educa-
tional platform supporting our R&D process as well as our
educational activities under the non-restrictive University of
Illinois/NCSA Open Source License [8]. We call our platform
KETCube. The name of the KETCube platform consists of the
abbreviated name of the institution of its origin – Department
of Technologies and Measurement (KET), University of West
Bohemia in Pilsen – and the shape of the basic sensor node –
a cube.

The KETCube platform itself represents the “point of
integration” for wide range of heterogeneous software and
hardware modules. The platform is not intended to be a new
“field-breaking” tool coming with novel approaches. Instead
the KETCube synthesizes many state-of-the-art approaches to
provide powerful IoT platform. The added value of KETCube
is that it provides an unique, well documented, simple to
employ and simple to extend ecosystem for integration of
different modules. The emphasis is on the usage of industry-
level (but simple enough) approaches enabling efficient usage
of the KETCube platform as an educational and prototyping
tool in the same time.

The platform itself consists of three parts: Hardware (asem-
bled Printed Circuit Boards – PCBs and the Box), Firmware
and Documentation. Each part is designed in such a way, that
it can be used independently of others and it is compatible
with a number of the 3rd party parts while using all KETCube
platform parts together is advantageous. E.g. the Firmware can
be used with the 3rd party compatible boards1,2; PCBs can be
used with the 3rd party firmware3,4 and the documentation
naturally as a reference for related projects.

As every platform part can be used separately, from the
project management point of view, multiple repositories are
used: a single repository is used for firmware5, another repos-
itory for documentation6 and for the main board7 resources.
The additional board design files and documentation reside in
separate repositories. Even though the project structure is flat,
the general platform documents keep all parts together and ex-
plain connections and synergies between platform components
– thus the best starting point is the documentation repository
serving as a project home-page.

In order to increase the educational potential of the
KETCube platform, open or at least free-of-charge industry-
level tools are always preferred to perform any project-related

1Grasshopper LoRa Development Board (https://www.tindie.com/products/
TleraCorp/grasshopper-lora-development-board/)

2B-L072Z-LRWAN1 (https://www.st.com/en/evaluation-tools/b-l072z-
lrwan1.html)

3https://github.com/GrumpyOldPizza/ArduinoCore-stm32l0
4https://github.com/kriswiner/CMWX1ZZABZ
5https://github.com/SmartCAMPUSZCU/KETCube-fw
6https://github.com/SmartCAMPUSZCU/KETCube-docs
7https://github.com/SmartCAMPUSZCU/KETCube-mainBoard

task. The quality and width of available documentation has
high priority while preserving documentation portioning to
user-level documents (unified and well defined format) and
task-specific developer-level documents (varying format – de-
pends on the task type).

A. Hardware

The important feature introduced on the KETCube platform
is a semi-standardized KETCube socket – see Figure 1. The
KETCube socket allows to use a wide range of ready-to-use
boards [9], as the socket is compatible with a widely used
[9] mikroBUSTMsocket (a part of header H4 and header H5),
thus mikroBUSTM-compatible boards can be used with the
KETCube.

The KETCube socket is a superset of the mikroBUSTMwith
4 additional configurable (solder jumpers) IO pins (IO1 – IO4)
and the increased space between headers (headers H4 and
H8; from 22.86mm = 0.9” at the mikroBUSTMto 29.21mm
= 1.15”), bringing more space for e.g. inter-header placement
of batteries. Just two (H4 and H8) or even all (H4, H5 and
H8) headers can be placed on a KETCube-compatible board.

KETCubeIO1

IO2

IO3

IO4

H4

H5 H8

Fig. 1. KETCube socket and mikroBUSTM– a subset of the KETCube socket

The heart of the platform is the 32x32mm main board
equipped with the KETCube socket and well-established
ARM-based SMT32L0 MCU [10] together with the Semtech’s
SX1276 radio [11] in a single package deployed by Murata
as Type ABZ LoRa Module [12]. Additionally, the Ti’s RHT
(Relative Humidity and Temperature) sensor HDC1080 [13]
allows to use the main board itself as a simple environmental
sensor.

As the KETCube socket headers H4 and H8 are placed
at the board edges, the recommended pass-through head-
ers allow almost infinite stacking of KETCube-compatible
boards. Additionally, one mikroBUSTM-compatible board can
be stacked at the top of the KETCube, as the main board
is equipped with headers (H4, H5 and H8) corresponding to
the mikroBUSTMlayout. The only inconvenience is, that if
the KETCube socket is occupied by an mikroBUSTMboard,
stacking of additional boards at the top is disabled, while
stacking at the bottom is still possible.

Depending on the user’s needs, a bulk antenna, SMA
or ULF connectors can be assembled. 10 solder jumpers
increase the adaptability of the board: besides they enable pin
assignment options (IO1 – IO4), power source selection, etc.
[14].

The MCU can be programmed through the on-board SWD
(Serial Wire Debug) socket. The main board can be powered
through micro USB (5V) or a 3V3 socket pin.



Fig. 2. KETCube platform hardware: the main board with a bulk antenna,
box and battery board with CR-2450

The second PCB included in the current project release is
the battery board for CR-2450 allowing the KETCube battery
operation. The CR-2450 is recommended for evaluation only.

A typical KETCube based system contains a main board, a
battery board (with a KETCube socket and battery) and a sen-
sor board connected to the KETCube or mikroBUSTMsocket.
Up to three KETCube boards can be stacked together and
placed into a pre-designed cube-box – see Figure 2. If more
than three boards are used or the physical layout of boards
stacked on the main board overlaps the physical size of the
main board, a custom box must be used.

For detailed description, see KETCube Datasheet [14].

B. Firmware

The KETCube firmware is divided into two logical parts:
Core and Modules. The structure of the firmware stack is in
Figure 3. The hierarchical structure of the stack reflects the
mission of the platform while keeping it as clear and simple
as possible.

STM32L0 MCU

STM32 HAL Drivers

KETCube Core
Drivers

KETCube Modules

KETCube Module
Drivers

KETCube Core

Fig. 3. KETCube firmware stack

The KETCube Core is the principal part of the KETCube
platform firmware. It is not closely related to the underlying
hardware and it is designed to be easily ported to any MCU

platform if necessary. The KETCube Core is not an operating
system.

The hardware-related part required by the KETCube Core
is denoted as the KETCube Core Drivers and it contains
only drivers employed exclusively by the KETCube Core:
the EEPROM driver enabling the non-volatile configuration
storage and the serial line driver required for the KETCube
command line interface.

On the other hand, KETCube module implements a partic-
ular functionality, e.g. LoRaWAN, an on-chip ADC sensor or
a specific I2C slave support. The module can closely interact
with hardware by using STM32 HAL drivers or even lower-
level drivers [10]. The decision fully depends on a module
maintainer, that should consider the module nature, code
readability, decomposition and maintainability [15]. Usage of
existing Module Driver(s) is recommended if possible. Writing
a new driver is recommended, when there is a potential of re-
usability of an introduced driver.

Modules are further divided depending on their purpose
to: Sensing Modules, Communication Modules and Actuating
Modules.

The KETCube firmware operates according to the diagram
in Figure 4. Most of the useful work is performed by periodic
tasks (one task per module is executed with the system period)
and in the meantime, the KETCube stays in a low-power
mode (interrupts are handled). With the frequency given by
the system period, all sensing modules produce data: these
are passed to (all enabled) communication module(s) and
transmitted. Data (commands) received by communication
module(s) are passed to respective actuating (or configuration)
modules (inter-module messages) and processed (executed).

init KETCube

init
modules

perform
periodic tasks

system period
elapsed

process
inter-module

messages

system period
not elapsed

deinit
modules

low-power mode
disabled

or
failed to enter

low-power mode

low-power
mode

system period
elapsed interrupt

Fig. 4. Simplified KETCube firmware operation diagram

The responsibility of each module is to translate data for-
mats between the inter-module KETCube format and the intra-



module formats, which can be specific to particular technology
implemented by the module itself (e.g. LoRaWAN stack).

The approach used for handling the data is as straight-
forward and as simple as possible. Data transmitted from
the KETCube are sequenced in the order given by enabled
sensing modules (more modules enabled→ longer data frames
transmitted). To be able to decode the data received from
the KETCube properly, one must only know which modules
were enabled on the originating KETCube and the format
of data produced by used modules. For multi-byte variables,
BigEndian is preferred.

The data received by the KETCube must (implicitly or
explicitly) contain the index of a destination module. This can
vary for different communication modules – e.g. port numbers
are used by LoRaWAN module – the communication module’s
responsibility is to translate a module-specific format to the
KETCube core representation.

As the KETCube firmware is highly modular and config-
urable at both – source-code and binary – levels, any module
can be enabled/disabled individually by using preprocessor
definitions at compile time (module linked or not) or by using
the KETCube command line interface at run-time (module
On/Off). The whole firmware uses exclusively static data
structures. Included modules are statically registered and the
core uses a defined callback interface to deal with them.

As the introduction of the KETCube platform was driven
also by the educational potential of such work, the code
readability and maintainability is an absolute priority [15]
together with availability of used tools. Multiple open and
commercial IDEs including Keil µVision, Atollic TrueSTU-
DIO or SW4STM32 can be used to work with the KETCube
project. Naming conventions [16] are defined and the coding
style is defined in terms of well established GNU/Indent tool
[17].

The complete Doxygen [18] programming documentation
is provided alongside the code8.

C. Documentation

The documentation of open hardware projects in general
has varying quality [19]. The KETCube platform documenta-
tion is structured in such a way to enable multi-level recogni-
tion of the platform. The structure of the documentation fol-
lows the structure used by the leading semiconductor industry
manufacturers such as Texas Instruments, ST Microelectronics
or Analog Devices to increase the educational and usability
benefits of such documentation for students as well as for
developers and common users.

There are several types of documents: the root document is
the KETCube platform datasheet [14], followed by application
notes [16] related to particular use cases and development
steps. The most detailed and partially heterogeneous documen-
tation is represented by task-specific and annotation-generated
documents (firmware documentation generated by Doxygen,
reports related to PCB designs, . . . ).

The datasheet together with application notes are highest
user-level and unified-style PDF documents related to the

8https://smartcampuszcu.github.io/KETCube-fw

KETCube platform, while the deep-in theoretical introduction
can be included depending on the documented use case(s) (e.g.
theory of measurement). These documents can be found in the
documentation repository.

The documentation closely-related to a particular part of
the KETCube platform – a developer-level documentation –
is placed in the same repository as the documented part (e.g.
Doxygen documentation of firmware is a part of the firmware
repository).

The overall structure of the documentation allows the
up-down study procedure: one can start from the user-level
documentation represented by the KETCube datasheet [14].
Firmware developers can benefit from structured and open
Doxygen-generated documentation and firmware-related ap-
plication notes [16]. Hardware developers gain from released
sample designs and published application notes [16]. For those,
who deploy the KETCube-based solution, also the application
notes will be a valuable source of information.

D. KETCube-based Project Life Cycle

The platform is intended to be used for prototyping and
validation of low-performance and low-power wireless IoT
devices and technology demonstrators allowing to accelerate in
particular the project prototyping, validation and testing stages
– see Figure 5, while enabling fast move to a production phase.

Prototy

Fig. 5. Typical KETCube-based system development stages

Normally, within the KETCube-based project, at least one
KETCube extension board and one KETCube firmware module
are created: the extension board is stacked with the KETCube
main board and the firmware module is integrated into the
KETCube firmware.

The project development cycle may iterate several times
thru stages shown in Figure 5, while reusing most of the work
from previous iterations due to the hardware and software
modular design.

The mass production may require a customized PCB
(Printed Circuit Board) design: integration of involved boards
to cut the product price.

E. Comparison with Existing Platforms

When designing an IoT device, one can start with manu-
facturer’s reference designs or dev-kits. The significant disad-
vantage of many dev kits is their size. Especially for later



design phases, such as in-field testing, smaller devices are
advantageous – this may require the test series manufacturing.

The KETCube extension-board based approach brings easy
to use development platform, which is reasonably flexible,
while staying reasonably small. This allows to perform most of
the development stages directly with the development platform
without manufacturing special test series. Even if the custom
PCB will be always preferred for mass production, the original
(in-development) boards can be used as final design for smaller
series, as the size of KETCube-based system is reasonably
small.

As the firmware development starting point, the manufac-
turer’s firmware examples can be used. These are often good
enough to design simple IoT device, but reasonable effort may
be required to extend or modify them, because of missing
features, lack of documentation or custom design style.

Another option is to choose an embedded operating sys-
tem like FreeRTOS9. The disadvantage of such an operating
system is that there is longer learning curve compared to
simpler pieces of code. More complicated system may also
cause significant performance and power consumption penalty
when used on small low-power and low-performance MCUs.
Additionally, the system complexity makes the overall system
optimization more difficult. The educational usage (especially
in entry-level classes) is also limited due to the system com-
plexity.

For ARM-based platforms, ARM deploys the Mbed OS10.
This platform is probably very good choice for many projects,
as it has great community and is supported by one of the
leaders in the semiconductor industry. After all, the KETCube
fits better to many cases: as Mbed OS is open source software,
you can naturally study or modify it, but this requires a lot
of knowledge similarly to other embedded operating systems.
The expected usage of Mbed OS involves custom Mbed tools,
which allows to write just simple applications and hide all
the annoying work. This results in two extremes: working
with Mbed OS is extremely hard (low-level modifications) or
extremely easy and simplified (applications).

The mid-complexity of the KETCube firmware allows to
understand the whole firmware, while providing number of
useful functions. This makes the KETCube firmware ideal for
educational purposes or for projects, where firmware should
be compact and easy to optimize. A disadvantage of the
KETCube firmware is that it currently supports only one
hardware platform, but due to limited complexity, porting to
other platforms is not a significant problem.

In educational process and also for simpler commercial
projects, Arduino R© is often used. The Arduino R© and the
KETCube platforms are both designed to be as easy to mod-
ify/reuse as possible. While the Arduino R© platform is univer-
sal, the KETCube is intended for LPWAN device prototyping
and education only. Even though we like Arduino R© as an
useful tool for prototyping of almost everything, the KETCube
platform is more suitable for prototyping and education in the
area of LPWAN devices.

9https://www.freertos.org
10https://www.mbed.com

The following points highlight the differences with the
Arduino R© platform:

• the emphasis on the industry-level documentation style
and quality in contrast with tutorial-based Arduino R©

approach,

• the priority in usage of professional (industry stan-
dard) tools including Keil µVision, Doxygen or
GNU/Indent in contrast with custom and simplified
tools,

• the focus on the LPWAN device prototyping and
education only in contrast with universality and great
diversity of Arduino R©,

• the transparency of the development process is not
sacrificed for simplicity. For example: Arduino R© IDE
implicitly hides the library code to make the overall
project structure simpler. The KETCube firmware has
no implicitly hidden parts, while preserving the sim-
plicity through solid decomposition.

The following points highlight the KETCube platform
advantages:

• the ready-to-use approach: multiple sensors can be
used without writing a single line of code (KETCube
user-level configuration),

• the easy-to-extend approach: the documented software
and hardware parts and the unified design style make
the KETCube platform easy to modify or extend,

• the transparency approach: standard approaches are
used in a straightforward, clear and well documented
way,

• the mid-complexity approach: the KETCube firmware
is complex enough to simplify most annoying tasks
during the IoT device development, while staying
simple enough to enable fast and detailed insight,

• the reasonable size approach: thanks to small PCB
sizes, the KETCube can be directly used for in-field
testing or even for deployment.

III. USE CASES

In this section, we present several use cases to demon-
strate the flexibility and usability of the presented KETCube
platform.

A. Environmental Sensor LPWAN Node

The environmental sensing is the basic functionality rep-
resented by a number of IoT sensor nodes. The KETCube
platform in the basic configuration (the main board, the battery
board and the box) is a ready-to-use environmental sensor:
almost no effort is needed to run the RHT sensor, when
one already has the KETCube board running the KETCube
firmware.

Deploying the KETCube RHT sensor requires just to set
the network parameters by using the serial terminal interface
(Figure 6) and configure the device in a network (e.g. Lo-
RaWAN server configuration).



> enable HDC1080
> enable LoRa
> set LoRa OTAA
> set LoRa appEUI 1122334455667788
> set LoRa appKey 11223344556677881122334455667788
> reload

Fig. 6. KETCube serial terminal confiruration example: LoRa OTAA and
HDC1080 RHT sensor

Fig. 7. KETCube as an RHT sensor fasten to a ferromagnetic surface

The KETCube can be placed in the monitored environment
to gain data – see Figure 7. The permanent magnet, which is
an optional part of the KETCube box can be used to fasten
the KETCube to a ferromagnetic surface.

B. Object Presence Sensing Demonstrator

The KETCube has been used as the base platform for a
technology demonstrator for wireless textile capacitive sensor.
This case demonstrates the flexibility of the presented platform,
as it is used in an unusual scenario. The KETCube is not used
as an LPWAN node but two KETCubes are used to establish
a point-to-point wireless link for measured data transmission.

The demonstrator consists of two KETCubes. The first
KETCube serves as a (USB-powered) smart sensor equipped
with a textile capacitor and Texas Instruments FDC2214 ca-
pacitance to digital converter – see Figure 8. The principle
of sensing is as follows: the textile capacitor is located at a
place, where an object presence should be monitored. If an
object with a certain weight is placed at the sensor plate, the
capacity of the sensor changes accordingly. The capacity is
measured by FDC2214 connected to the KETCube.

The second KETCube (Figure 9) serves as a PC-connected
data concentrator. The concentrator continuously re-transmits
data received from the sensor to a PC, where the measurement
is visualized by a simple python script (a part of the KETCube
project – support tools).

When powered up, the wireless link between both
KETCubes is established using standard KETCube modules
only (starNetwork module). The sensor site continuously trans-
mits measured values and thanks to the wireless link between
the two KETCubes, the data are on-line displayed on the
connected PC.

The only parts specifically created for this project were
the FDC2214 firmware module, the physical interconnection

Fig. 8. Textile capacitive sensor connected to the KETCube in a custom box

Fig. 9. Textile capacitive sensor with the KETCube in a custom box (white)
and the KETCube as a data concentrator in the standard KETCube box (black)
equipped with an in-cable FTDI Serial2USB converter

of FDC2214 development board and KETCube and the custom
box.

The Object Presence Sensing Demonstrator is currently
a work-in-progress project requiring additional work in the
textile sensor testing and validation. If the project will move
to the next phase, the textile sensor will operate autonomously
and an LPWAN network will probably be used. Here, the
advantage of the KETCube will appear: no additional work
will be required, as only different KETCube module will be
used for wireless communication and none of both – hardware
and software – will require modifications.

C. Educational Use-Cases

The KETCube platform is already used in the educational
process at our institution. A project solved by one of our
students involves the implementation of the firmware module
for the Thunder click11 mikroBUSTMsensor board. The Thun-
der click is intended to detect the presence and proximity
of a potentially hazardous lightning activity. The hardware
configuration is in Figure 10.

As a part of the work, an application note describing the
deployment and use cases related to an IoT sensor equipped
with the Thunder click will be created.

Direct usage of the KETCube platform in the educational
process (in a class) is planed for the next semester.

11https://www.mikroe.com/thunder-click



Fig. 10. Thunder click board in a mikroBUSTM-compatible KETCube socket

IV. CONCLUSIONS

We identified challenges coming from a heterogeneous and
fast growing area of IoT related to the sensor node devel-
opment. Based on our experience in R&D and educational
process, we proposed a novel KETCube platform intended to
support both R&D and educational activities.

The current release of the KETCube platform includes the
main board, battery board, datasheet, three application notes
and firmware (v0.1).

The current release of KETCube platform Core firmware
(v0.1) allows the module management and configuration. En-
abling/disabling modules can be performed in the compile time
– module linked or not – or in the run-time – module On/Off
– by using a serial terminal.

The current release of the KETCube platform Modules
firmware (v0.1) includes the LoRaWAN module (full Class A
support), a proprietary starNetwork module (allows to form
an ad-hoc KETCube network), the ADC module and the
HDC1080 module. Thanks to the ADC module, the KETCube
can be used in connection with any voltage output sensor.

The documentation currently associated with the KETCube
includes the Datasheet and a set of basic application notes
describing: (i) the KETCube module creation process, (ii) the
voltage measurement up to 100V DC (theory of operation,
front-end circuit and KETCube settings) and (iii) LoRa module
(configuration and customization).

V. FUTURE WORK

Most of the future work currently concentrates on
the KETCube firmware, although other tasks – e.g. new
firmware/hardware modules – will be performed in parallel.

As the KETCube platform development itself started orig-
inally from a particular application-oriented project (based
on STM32 and Semtech code), the code of (some) firmware
modules still contains residues of a code, which requires
refactoring.

A great challenge is the adoption of a test and validation
methodology and their incorporation into the open KETCube
project in an appropriate way.

The set of modules will be soon extended by the Sigfox
module, which is currently under development.

The KETCube is/will be used in certain projects
(co-)solved in our department including the development of

autonomous sensor for the Fire Rescue Service of the Czech
Republic distributed by a quadrocopter and development of a
custom environmental sensor for smart farming.

Currently one of our industrial partners started a KETCube-
based smart-metering IoT node development project, which
includes proprietary development, but it will also result in
contributions to the public KETCube project.

ACKNOWLEDGMENT

This research has been partially supported by the grant
QK1810010 of the Ministry of Agriculture of the Czech
Republic, “Automatic system for collecting and processing of
temperature and humidity parameters of microclimate and soil
for conditions of precision farming in the Czech Republic on
the principle of the Internet of Things (IoT)” (2018 – 2022).

REFERENCES

[1] T. Snyder and G. Byrd, “The Internet of Everything,”
Computer, vol. 50, no. 6, pp. 8–9, 2017. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/MC.2017.179

[2] S. Musa, “Smart cities – a road map for development,” IEEE Potentials,
vol. 37, no. 2, pp. 19–23, March 2018.

[3] U. Raza, P. Kulkarni, and M. Sooriyabandara, “Low Power Wide Area
Networks: An Overview,” IEEE Communications Surveys & Tutorials,
vol. 19, no. 2, pp. 855–873, Secondquarter 2017.

[4] J.-P. Bardyn, T. Melly, O. Seller, and N. Sornin, “IoT: The era of
LPWAN is starting now,” in European Solid-State Circuits Conference,
ESSCIRC Conference 2016: 42nd. IEEE, 2016, pp. 25–30.

[5] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and
S. U. Khan, “The rise of “big data” on cloud computing: Review and
open research issues,” Information Systems, vol. 47, pp. 98–115, 2015.

[6] Y. Xia, “Cloud control systems,” IEEE/CAA Journal of Automatica
Sinica, vol. 2, no. 2, pp. 134–142, 2015.

[7] J. He, D. C.-T. Lo, Y. Xie, and J. Lartigue, “Integrating internet
of things (iot) into stem undergraduate education: Case study of a
modern technology infused courseware for embedded system course,”
in Frontiers in Education Conference (FIE), 2016 IEEE. IEEE, 2016,
pp. 1–9.

[8] “The University of Illinois/NCSA Open Source License (NCSA),”
https://opensource.org/licenses/NCSA, accessed: 2018-04-11.

[9] “mikroBUSTM,” https://www.mikroe.com/mikrobus, accessed: 2018-04-
11.

[10] “STM32L0 Series,” http://www.st.com/en/microcontrollers/stm32l0-
series.html, accessed: 2018-04-11.

[11] “Semtech SX1276,” https://www.semtech.com/products/wireless-
rf/lora-transceivers/SX1276, accessed: 2018-04-11.

[12] “Type ABZ,” https://wireless.murata.com/eng/products/rf-modules-
1/lpwa/type-abz.html, accessed: 2018-04-11.

[13] “HDC 1080,” http://www.ti.com/product/HDC1080, accessed: 2018-04-
11.

[14] KETCube datasheet, University of West Bohemia in Pilsen,
2018, rev. 05/2018, https://github.com/SmartCAMPUSZCU/KETCube-
docs/blob/master/KETCubeDatasheet.pdf.

[15] D. Boswell and T. Foucher, The art of readable code. ” O’Reilly
Media, Inc.”, 2011.

[16] “KETCube AppNotes,” https://github.com/SmartCAMPUSZCU/
KETCube-docs/tree/master/appNotes, accessed: 2018-05-10.

[17] “GNU/Indent,” https://www.gnu.org/software/indent/, accessed: 2018-
04-11.

[18] “Doxygen,” https://www.doxygen.org/, accessed: 2018-04-11.
[19] “Open Source Hardware Documentation Jam,”

https://www.oshwa.org/2013/03/17/open-source-hardware-
documentation-jam/, accessed: 2018-04-11.


