

Faculty of Information Technology

Smart re-use of hardware peripherals for better software UART

<u>Jan Bělohoubek</u>

jan.belohoubek@fit.cvut.cz Czech Technical University in Prague Faculty of Information Technology

The 3^{rd} Prague Embedded Systems Workshop This work was in part supported by CTU grant SGS15/119/OHK3/1T/18

Smart re-use of hardware peripherals for better software UART

New feature/peripheral HW/SW implementation comparison

HW implementation

- + higher performance
- + performance of the original circuit is not (very much) influenced
- total cost
- time to market
- ? additional static power consumption and dynamic power consumption is given by HW utilization

SW implementation

- lower performance
- available CPU computation time reduced
- + total cost
- + time to market
- ? power consumption given (not only) by software execution time

Faculty of Information Technology

Technology characteristics Low-power microcontroller

Microcontroller characteristics:

- \rightarrow 8-bit RISC architecture CoolRisc core
- \rightarrow up to 5 MIPS at 10 MHz
- → limited abilities for "universal" communication GPIO, configurable 8-bit SPI master/slave

HW or SW implementation?

Faculty of Information Technology

General GPIO implementation limitations:

- $\rightarrow\,$ precise timing is not well achievable in software, when another asynchronous events are considered
- $\rightarrow\,$ interrupt-driven implementation interrupts the CPU core frequently
- The presented software implementation of UART extensively uses HW dedicated for SPI
 - \rightarrow fast implementation
 - ightarrow relatively high performance
 - $\rightarrow\,$ low impact to CPU performance (and power consumption)

Well-known technologies SPI overview

- 3-wire interface SCL, MOSI, MISO (and possibly SS – slave select signal)
- single-master, multi-slave
- synchronous communication

Well-known technologies UART overview

- 2-wire interface RxD, TxD
- point-to point connections
- asynchronous communication
- debugging, superior system interfacing

$\underset{\text{The Idea}}{\text{SPIUART implementation}}$

Faculty of Information Technology

- similar interfaces duplex communication
- UART device is always a communication initiator
- SPI master can also be a communication initiator

UART

SPIUART implementation Requirements and limitations

SPI master

- $\rightarrow\,$ ability to initialize SPI during START BIT reception limits the baud rate
- $\rightarrow\,$ SCL pin is occupied even if it is not required for communication
- \rightarrow SPI bit width limits the UART data bit count
 - transmission (SPI master) START, STOP and 6 DATA bits
 - reception (SPI master) START + 7 DATA bits (possibly 8 DATA bits)

SPIUART implementation

of Information Technology

SPIUART – trade-off choice UART DATA bit count selection

asymmetric 6/8 DATA bit UART can be implemented

- to increase the effectiveness, 8 should be selected → two MSBs received from SPI master are always equal to STOP bit (one)
- if 7 is selected, ASCII terminal can be used for communication and debugging

						Α	SCII	Cod	de Cl	hart							
_	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F	L
0	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	HT	LF	VT	FF	CR	S0	SI	
ī	DLE	DC1	DC2	DC3	DC4	NAK	SYN	ETB	CAN	EM	SUB	ESC	FS	GS	RS	US	
2		!		#	\$	9jö	&	•	()	*	+	,	-	•	/	
3	Θ	1	2	3	4	5	6	7	8	9	:	:	<	=	>	?	
4	0	A	В	С	D	E	F	G	Н	I	J	K	L	М	Ν	0	h
5	Р	Q	R	S	Т	U	V	W	Х	Y	Z	[\]	^	_	
6	`	a	b	с	d	е	f	g	h	i	j	k	ι	m	n	0	
Ţ	р	q	r	s	t	u	v	W	х	У	z	{		}	~	DEL	V
×																	٢.

0x40 ... 0x7F

An image from Wikipedia, The Free Encyclopedia, www.wikipedia.org

Faculty of Information Technology

Comparison with existing GPIO implementation

	EM68xx softUART	SPIUART
Transmission data bit count	8	6
Reception data bit count	8	8
Baud rate [bit/s]	fixed 2400	up to 9600
# ISRs executed during transmission	9	1
# ISRs executed during transmission/data bit	1,125	0,167
# ISRs executed during reception	10	2
# ISRs executed during reception/data bit	1,250	0,250
C code including preprocessor directives	up to 140 lines	up to 250
Assembly language equivalent	240 lines	127 lines
Number of instructions	972	504
Used program memory	6%	3%
Number of NOP instructions	87	0
Instructions in ISRs	656	268
The share of instructions in ISRs	67%	53%
Used I/O PINs	2	3