

#### Error Correction Method Based On The Short-Duration Offline Test

#### Jan Bělohoubek, Petr Fišer, Jan Schmidt

 ${\tt jan.belohoubek, petr.fiser, jan.schmidt} @fit.cvut.cz$ 

Czech Technical University in Prague Prague, Czech Republic

DSD 2016, Limassol - Cyprus



#### Faculty of Information Technology

#### What?

- Combine time and area redundancy to achieve error-correction
- Reduce the number of required test vectors from thousands to tens

- Why?
  - To reduce the total system costs
    - To reduce the test time and the test-hardware complexity

- Employ an extremely short offline test short-duration offline test
- Describe the circuit properties required for the short-duration test
- Propose special hardware structures enabling the short-duration test



Faculty of Information Technology

# What?

- Combine time and area redundancy to achieve error-correction
- Reduce the number of required test vectors from thousands to tens

Why?

- To reduce the total system costs
  - To reduce the test time and the test-hardware complexity

- Employ an extremely short offline test short-duration offline test
- Describe the circuit properties required for the short-duration test
- Propose special hardware structures enabling the short-duration test



Faculty of Information Technology

# What?

- Combine time and area redundancy to achieve error-correction
- Reduce the number of required test vectors from thousands to tens

# Why?

- To reduce the total system costs
- To reduce the test time and the test-hardware complexity

- Employ an extremely short offline test short-duration offline test
- Describe the circuit properties required for the short-duration test
- Propose special hardware structures enabling the short-duration test



Faculty of Information Technology

# What?

- Combine time and area redundancy to achieve error-correction
- Reduce the number of required test vectors from thousands to tens

# Why?

- To reduce the total system costs
- To reduce the test time and the test-hardware complexity

- Employ an extremely short offline test short-duration offline test
- Describe the circuit properties required for the short-duration test
- Propose special hardware structures enabling the short-duration test



Faculty of Information Technology

### What?

- Combine time and area redundancy to achieve error-correction
- Reduce the number of required test vectors from thousands to tens

# Why?

- To reduce the total system costs
- To reduce the test time and the test-hardware complexity

- Employ an extremely short offline test short-duration offline test
- Describe the circuit properties required for the short-duration test
- Propose special hardware structures enabling the short-duration test



Faculty of Information Technology

# What?

- Combine time and area redundancy to achieve error-correction
- Reduce the number of required test vectors from thousands to tens

Why?
 To reduce the total system costs

To reduce the test time and the test-hardware complexity

- Employ an extremely short offline test short-duration offline test
- Describe the circuit properties required for the short-duration test
- Propose special hardware structures enabling the short-duration test



Faculty of Information Technology

# What?

- Combine time and area redundancy to achieve error-correction
- Reduce the number of required test vectors from thousands to tens

To reduce the total system costs

o educe the test time and newsest-hardware complexity

# How?

Employ an extremely short offline test – short-duration offline test

Why?

- Describe the circuit properties required for the short-duration test
- Propose special hardware structures enabling the short-duration test



Faculty of Information Technology

# What?

- Combine time and area redundancy to achieve error-correction
- Reduce the number of required test vectors from thousands to tens

To reduce the total system costs

ounduce the test time and est-hardware complexity

# How?

Employ an extremely short offline test – short-duration offline test

Why?

- Describe the circuit properties required for the short-duration test
- Propose special hardware structures enabling the short-duration test



Faculty of Information Technology

# What?

- Combine time and area redundancy to achieve error-correction
- Reduce the number of required test vectors from thousands to tens

- To reduce the total system costs
- To reduce the test time and the test-hardware complexity

# How?

Employ an extremely short offline test – short-duration offline test

Why?

- Describe the circuit properties required for the short-duration test
- Propose special hardware structures enabling the short-duration test



Faculty of Information Technology

# What?

- Combine time and area redundancy to achieve error-correction
- Reduce the number of required test vectors from thousands to tens

Why?

- To reduce the total system costs
- To reduce the test time and the test-hardware complexity

- Employ an extremely short offline test short-duration offline test
- Describe the circuit properties required for the short-duration test
- Propose special hardware structures enabling the short-duration test

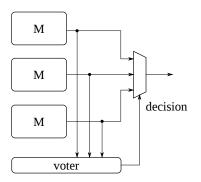


Faculty of Information Technology

# What?

- Combine time and area redundancy to achieve error-correction
- Reduce the number of required test vectors from thousands to tens

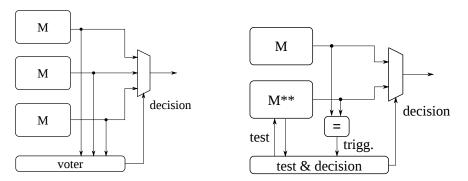
Why?


- To reduce the total system costs
- To reduce the test time and the test-hardware complexity

- Employ an extremely short offline test short-duration offline test
- Describe the circuit properties required for the short-duration test
- Propose special hardware structures enabling the short-duration test



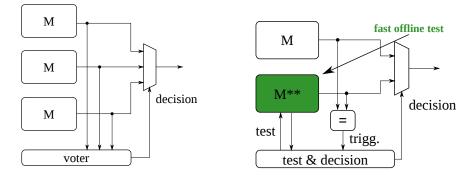
Fundamental Ideas Error-Correction


#### The most popular solution – TMR



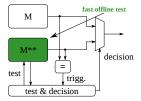


Fundamental Ideas Error-Correction


 The most popular solution – TMR  The proposed solution – *Time-Extended Duplex* (TED)





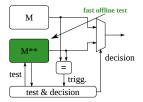

Fundamental Ideas Error-Correction

 The most popular solution – TMR  The proposed solution – *Time-Extended Duplex* (TED)





#### Fundamental Ideas Short-Duration Offline Test

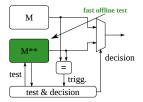



What is required:

Error Correction Method Based On TheShort-Duration Offline Test



### Fundamental Ideas Short-Duration Offline Test

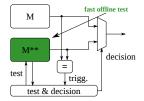



What is required:

the test length in orders of tens of computational (clock) cycles only



### Fundamental Ideas Short-Duration Offline Test



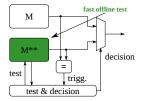

What is required:

- the test length in orders of tens of computational (clock) cycles only
- 100% fault coverage



### Fundamental Ideas Short-Duration Offline Test




What is required:

- the test length in orders of tens of computational (clock) cycles only
- 100% fault coverage

 $\rightarrow$  short-duration offline test



### Fundamental Ideas Short-Duration Offline Test



What is required:

- the test length in orders of tens of computational (clock) cycles only
- 100% fault coverage
  - $\rightarrow$  short-duration offline test
  - → special hardware structures



Observation Stuck-At-Fault Model

Only two test vectors are required to achieve 100% fault-coverage: *all-zero* and *all-one* vector

#### Theorem

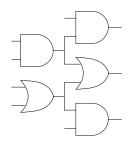
There is a two-vector-testable class of circuits with respect to the stuck-at-fault model.



Observation Stuck-At-Fault Model

 Only two test vectors are required to achieve 100% fault-coverage: *all-zero* and *all-one* vector

#### Theorem

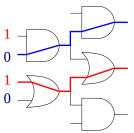

There is a two-vector-testable class of circuits with respect to the stuck-at-fault model.

Required circuit properties:

■ A monotonic circuit contains no inverters → fault symptom cannot change during propagation



### Observation Stuck-At-Fault Model




Required circuit properties:

- A monotonic circuit contains no inverters → fault symptom cannot change during propagation
- The circuit conforms the *indication principle* → every gate output is connected to at least one AND and one OR gate



Observation Stuck-At-Fault Model



stuck-at-1 / fault symptom: 1
stuck-at-0 / fault symptom: 0

Required circuit properties:

- A monotonic circuit contains no inverters → fault symptom cannot change during propagation
- The circuit conforms the *indication principle* → every gate output is connected to at least one AND and one OR gate



Observation Stuck-At-Fault Model

 Only two test vectors are required to achieve 100% fault-coverage: *all-zero* and *all-one* vector

#### Theorem

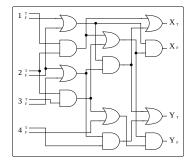
There is a two-vector-testable class of circuits with respect to the stuck-at-fault model.

Required circuit properties:

- A monotonic circuit contains no inverters → fault symptom cannot change during propagation
- The circuit conforms the *indication principle*  $\rightarrow$  every gate output is connected to at least one AND and one OR gate
- $\rightarrow$  Every stuck-at-fault is observable

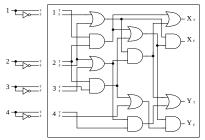



Efficient Monotonic Circuit Circuit Transformation


How to build the circuit complying with the "required properties"

- Make the circuit monotonic employ dual-rail logic
- Reconfigurable gates OR/AND gate
  - + less gates
  - + fault symptoms at the fault-affected wires
  - reconfigurable gate  ${\sf OR}/{\sf AND}$  is complex

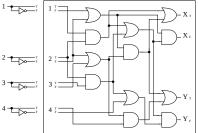



### Efficient Monotonic Circuit Dual-Rail Implementation








Efficient Monotonic Circuit Dual-Rail Implementation

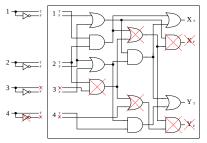


Faculty of Information Technology



**Efficient Monotonic Circuit Dual-Rail Implementation** 



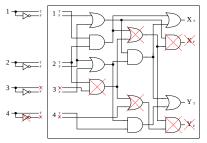

If the dual-rail logic serves as the inverter replacement only, the number of gates can be reduced

of Information Technology 



Information Technology

Efficient Monotonic Circuit Dual-Rail Reduction

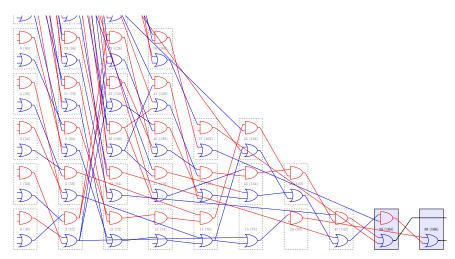



- If the dual-rail logic serves as the inverter replacement only, the number of gates can be reduced
- The number of gates can be the same as in the single-rail implementation (in the best case)



nformation Technology

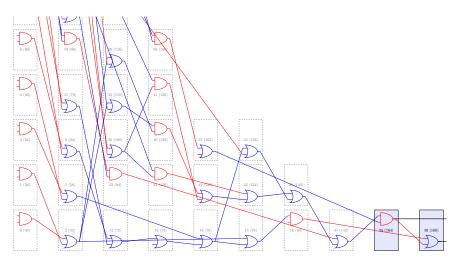
Efficient Monotonic Circuit Dual-Rail Reduction




- If the dual-rail logic serves as the inverter replacement only, the number of gates can be reduced
- The number of gates can be the same as in the single-rail implementation (in the best case)
- Sometimes is the output polarity optional this affects the *reduction success* → heuristics were developed



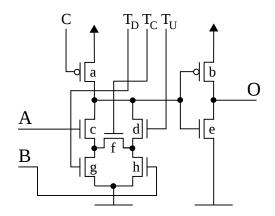
# Dual-Rail Reduction Positive outputs only (Cordic benchmark)


Faculty of Information Technology





Dual-Rail Reduction Greedy heuristic (Cordic benchmark)

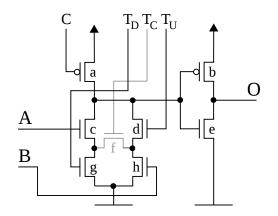

Faculty of Information Technology





Reconfigurable Gate Design

Faculty of Information Technology

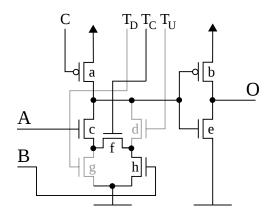



Domino-logic AND/OR gate with increased controlability



Reconfigurable Gate Design

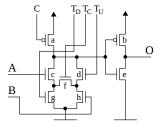
Faculty of Information Technology




Domino-logic OR gate  $T_D = 1$ ,  $T_C = 0$ ,  $T_U = 1$ 



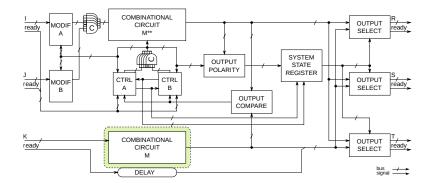
Reconfigurable Gate Design


Faculty of Information Technology



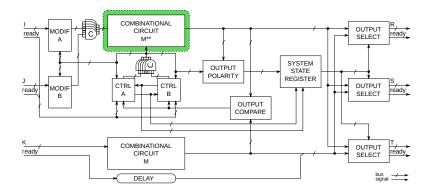
Domino-logic AND gate  $T_D = 0$ ,  $T_C = 1$ ,  $T_U = 0$ 




#### The Offline Test Overview

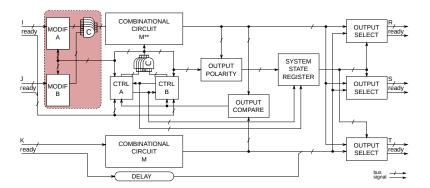


- Combinational logic test
- $\blacksquare$  Test of the reconfiguration is required o longer test
- Inspired by two-vector-testability; uses the state-holding property and the increased controlability of dynamic gates
- Test of all stuck-open/stuck-on faults
- The test length remains in orders of tens computational cycles only



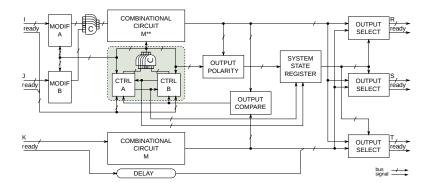

Structure of the TED Original Combinational Part





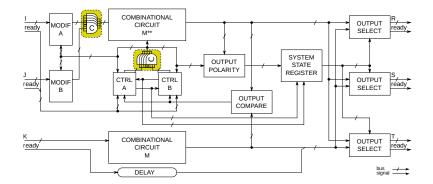

#### Structure of the TED Offline-Testable Combinational Part





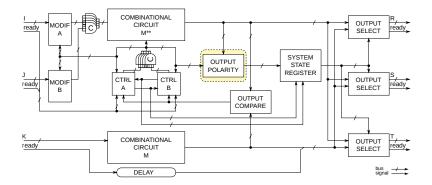

Structure of the TED Single-Rail to Dual-Rail and Test Input Gen.





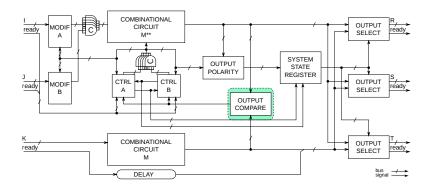

#### Structure of the TED Test Control Part





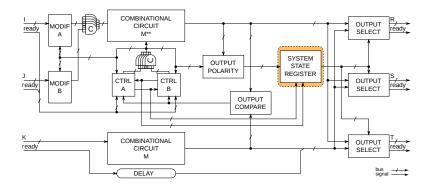

Structure of the TED Duplex Checkers





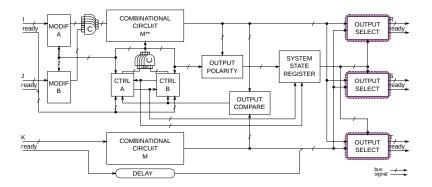

#### Structure of the TED Test Response Evaluation



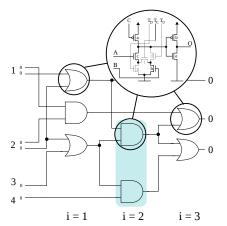



Structure of the TED Test Trigger



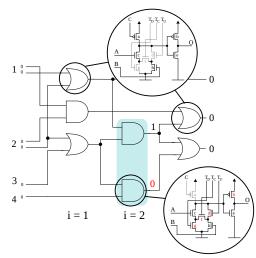



#### Structure of the TED Last Test Results



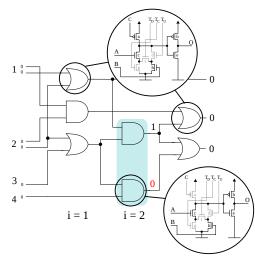



#### Structure of the TED Corect Output Selection









| step | С                                      | Τυ                              | T <sub>C</sub> | T <sub>D</sub>     | 0            |  |  |
|------|----------------------------------------|---------------------------------|----------------|--------------------|--------------|--|--|
| 1    |                                        | set circuit primary inputs to 0 |                |                    |              |  |  |
| 2    |                                        |                                 | star           | t at level $i=1$   |              |  |  |
| 3    |                                        |                                 | a              | at all levels:     |              |  |  |
|      | 0                                      | 0                               | 0              | 0                  | $\downarrow$ |  |  |
| 4    |                                        | at level <i>i</i> :             |                |                    |              |  |  |
|      | 1                                      | 1                               | 1              | 1                  | $\uparrow$   |  |  |
| 5    | at level <i>i</i> :                    |                                 |                |                    | 1            |  |  |
|      | 1                                      | 0                               | 0              | 0                  | 1            |  |  |
| 6    | at levels other than i:                |                                 |                |                    |              |  |  |
|      | 1                                      | 0                               | 1              | 0                  | 0            |  |  |
| 7    | set circuit primary inputs to 1        |                                 |                |                    |              |  |  |
| 8    | Check if the circuit output is all-one |                                 |                |                    |              |  |  |
| 9    |                                        | if (+                           | ·+i ≤          | depth) then goto 3 | 1            |  |  |

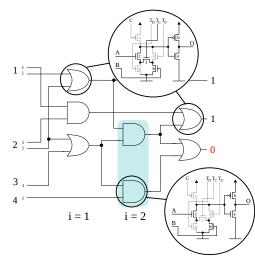




| step | С                                      | 0                   | T <sub>C</sub> | T <sub>D</sub>     | 0 |  |  |
|------|----------------------------------------|---------------------|----------------|--------------------|---|--|--|
| 1    | set circuit primary inputs to 0        |                     |                |                    |   |  |  |
| 2    | start at level $i = 1$                 |                     |                |                    |   |  |  |
| 3    |                                        |                     | a              | at all levels:     |   |  |  |
|      | 0                                      | 0 0 0 0             |                |                    |   |  |  |
| 4    |                                        | at level <i>i</i> : |                |                    |   |  |  |
|      | 1                                      | 1                   | 1              | 1                  | 1 |  |  |
| 5    | at level <i>i</i> :                    |                     |                |                    | 1 |  |  |
|      | 1                                      | 0                   | 0              | 0                  | 1 |  |  |
| 6    | at levels other than <i>i</i> :        |                     |                |                    |   |  |  |
|      | 1                                      | 0                   | 1              | 0                  | 0 |  |  |
| 7    | set circuit primary inputs to 1        |                     |                |                    |   |  |  |
| 8    | Check if the circuit output is all-one |                     |                |                    |   |  |  |
| 9    |                                        | if (+               | ·+i ≤          | depth) then goto 3 | 1 |  |  |

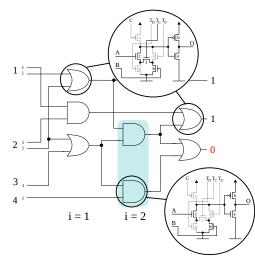





| step | С                                      | 0     | T <sub>C</sub> | T <sub>D</sub>     | 0          |  |
|------|----------------------------------------|-------|----------------|--------------------|------------|--|
| 1    | set circuit primary inputs to 0        |       |                |                    |            |  |
| 2    | start at level $i = 1$                 |       |                |                    |            |  |
| 3    |                                        |       | á              | at all levels:     |            |  |
|      | 0 0 0 0                                |       |                |                    |            |  |
| 4    | at level <i>i</i> :                    |       |                |                    |            |  |
|      | 1                                      | 1     | 1              | 1                  | $\uparrow$ |  |
| 5    | at level <i>i</i> :                    |       |                |                    | 1          |  |
|      | 1                                      | 0     | 0              | 0                  | 1          |  |
| 6    | at levels other than <i>i</i> :        |       |                |                    |            |  |
|      | 1                                      | 0     | 1              | 0                  | 0          |  |
| 7    | set circuit primary inputs to 1        |       |                |                    |            |  |
| 8    | Check if the circuit output is all-one |       |                |                    |            |  |
| 9    |                                        | if (+ | ·+i ≤          | depth) then goto 3 | 1          |  |





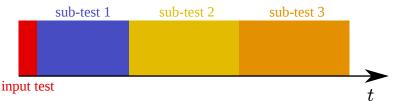

| step | С                                      | Τυ                  | T <sub>C</sub> | T <sub>D</sub>     | 0          |  |  |
|------|----------------------------------------|---------------------|----------------|--------------------|------------|--|--|
| 1    | set circuit primary inputs to 0        |                     |                |                    |            |  |  |
| 2    |                                        |                     | star           | t at level $i=1$   |            |  |  |
| 3    |                                        |                     | á              | at all levels:     |            |  |  |
|      | 0                                      | 0 0 0 0             |                |                    |            |  |  |
| 4    |                                        | at level <i>i</i> : |                |                    |            |  |  |
|      | 1                                      | 1                   | 1              | 1                  | $\uparrow$ |  |  |
| 5    | at level <i>i</i> :                    |                     |                |                    | 1          |  |  |
|      | 1                                      | 0                   | 0              | 0                  | 1          |  |  |
| 6    | at levels other than <i>i</i> :        |                     |                |                    |            |  |  |
|      | 1                                      | 0                   | 1              | 0                  | 0          |  |  |
| 7    | set circuit primary inputs to 1        |                     |                |                    |            |  |  |
| 8    | Check if the circuit output is all-one |                     |                |                    |            |  |  |
| 9    |                                        | if (+               | -+i ≤          | depth) then goto 3 | 1          |  |  |





| step | С                                      | Τυ                              | T <sub>C</sub> | T <sub>D</sub>      | 0          |  |  |
|------|----------------------------------------|---------------------------------|----------------|---------------------|------------|--|--|
| 1    |                                        | set circuit primary inputs to 0 |                |                     |            |  |  |
| 2    |                                        |                                 | star           | t at level $i = 1$  |            |  |  |
| 3    |                                        |                                 | a              | at all levels:      |            |  |  |
|      | 0                                      | 0 0 0 0                         |                |                     |            |  |  |
| 4    |                                        |                                 |                | at level <i>i</i> : | 0          |  |  |
|      | 1                                      | 1                               | 1              | 1                   | $\uparrow$ |  |  |
| 5    | at level <i>i</i> :                    |                                 |                |                     | 1          |  |  |
|      | 1                                      | 0                               | 0              | 0                   | 1          |  |  |
| 6    | at levels other than <i>i</i> :        |                                 |                |                     |            |  |  |
|      | 1                                      | 0                               | 1              | 0                   | 0          |  |  |
| 7    | set circuit primary inputs to 1        |                                 |                |                     |            |  |  |
| 8    | Check if the circuit output is all-one |                                 |                |                     |            |  |  |
| 9    |                                        | if (+                           | ·+i ≤          | depth) then goto 3  | 1          |  |  |





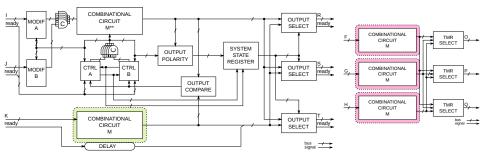

| step | С                                      | Τυ                     | T <sub>C</sub> | T <sub>D</sub>      | 0          |  |  |
|------|----------------------------------------|------------------------|----------------|---------------------|------------|--|--|
| 1    | set circuit primary inputs to 0        |                        |                |                     |            |  |  |
| 2    |                                        | start at level $i = 1$ |                |                     |            |  |  |
| 3    |                                        |                        | a              | at all levels:      |            |  |  |
|      | 0                                      | 0 0 0 0                |                |                     |            |  |  |
| 4    |                                        |                        |                | at level <i>i</i> : | 0          |  |  |
|      | 1                                      | 1                      | 1              | 1                   | $\uparrow$ |  |  |
| 5    | at level <i>i</i> :                    |                        |                |                     | 1          |  |  |
|      | 1                                      | 0                      | 0              | 0                   | 1          |  |  |
| 6    | at levels other than <i>i</i> :        |                        |                |                     |            |  |  |
|      | 1                                      | 0                      | 1              | 0                   | 0          |  |  |
| 7    | set circuit primary inputs to 1        |                        |                |                     |            |  |  |
| 8    | Check if the circuit output is all-one |                        |                |                     |            |  |  |
| 9    |                                        | if (+                  | -+i ≤          | depth) then goto 3  | 1          |  |  |



# The Offline Test Length

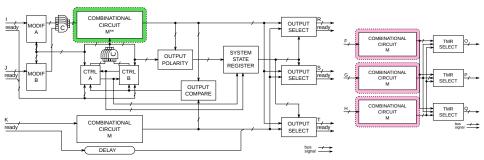
Faculty of Information Technology




$$(2t_e) + (dt_e) + (t_e + dt_e) + (t_e + dt_e)$$

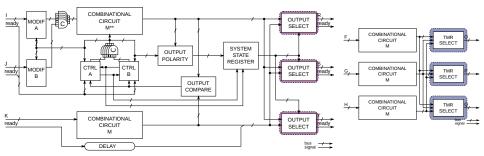
 $t_{tot} \leq (3d+4) \cdot t_e$ 

- Classical test  $>> 1000 \cdot t_e$
- Proposed test  $< 100 \cdot t_e$ 
  - $t_e$  computational (clock) cycle time; d circuit depth



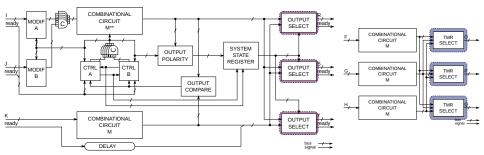








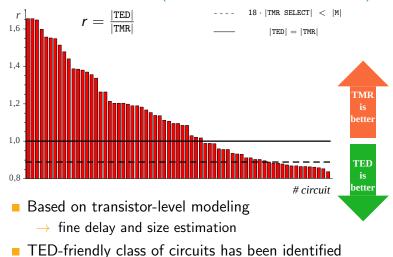











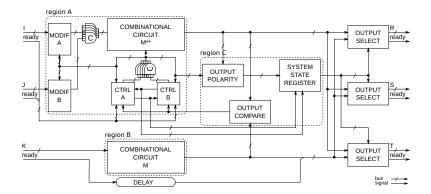

 $18 \cdot |\text{TMR SELECT}| < |M|$ 



mation Technology

Comparison Results (IWLS'2005 benchmark circuits)








- The principle of the short-duration offline test was presented
- Novel gate structure allowing the offline test was introduced
- The novel error-correcting design method combining time and area redundancy was developed (TED)
- The efficient monotonic circuit implementation was presented
- Usage of the TED was suitable (compared to the TMR system) for circuits having relatively large combinational parts and small number of outputs



# What happens when ...?

