

# Low-Cost CMOS Power Consumption Data Dependency Demonstrator Concept

# Jan Bělohoubek<sup>1</sup>, Robert Vik<sup>2</sup>

<sup>1</sup>jan.belohoubek@fit.cvut.cz, <sup>2</sup>rvik@ket.zcu.cz

<sup>1</sup>Czech Technical University in Prague, Czech Republic <sup>2</sup>University of West Bohemia in Pilsen, Czech Republic

The 7<sup>th</sup> Prague Embedded Systems Workshop 2019, Roztoky u Prahy, Czech republic

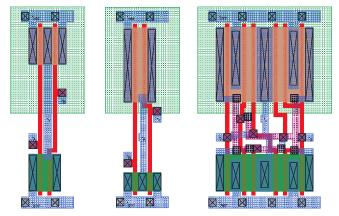


EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education





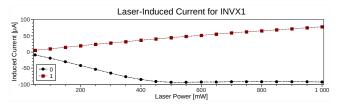
RESEARCH CENTER FOR INFORMATICS




We analyze the data dependency of the photocurrent induced by a laser beam in the illuminated CMOS device:

- $\rightarrow$  it's like amplified static power
- $\rightarrow\,$  lasers are often used to induce faults into registers
- $\rightarrow$  we analyze static current of **combinational circuits** modulated by illumination (a laser beam)
- Pros and Cons:
  - + combinational logic provides **sufficient area** (to target laser beam) even in recent technology nodes
  - + stored values remain unaltered
    - $\rightarrow\,$  error detection may not be raised
    - $\rightarrow\,$  measurement time may be prolonged
  - advisory values are mixed together  $\rightarrow$  the cocktail effect
  - possible attack requirements are strong known layout, precise laser beam localization

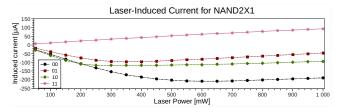



# Data Dependence in CMOS Conductivity is Influenced by Geometry



Layout of NAND2X1 (4  $\times$  10.8  $\mu m),$  NOR2X1 (4  $\times$  10.8  $\mu m)$  and XOR2X1 (7.2  $\times$  10.8  $\mu m)$  cells in 180nm TSMC technology




# Standard Cell Illumination INVX1 @ TSMC 180nm (SPICE)

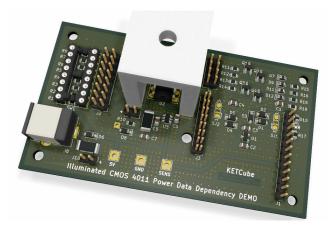


The photocurrent for INVX1 for different input patters and increasing laser power. The 0 and 1 input patterns are easy to distinguish



# Standard Cell Illumination NAND2X1 @ TSMC 180nm (SPICE)




The photocurrent for NAND2X1 for different input patters and increasing laser power. The 00 and 11 input patterns are easy to distinguish; patterns 01 and 10 cause similar currents, although the  $20\mu$ A difference (for 100mW and above) is still distinguishable



- Employs CMOS 4011 by Texas Instruments
  - Low cost, well known CMOS circuit in PDIP (Plastic Dual-In-Line Package)
  - Datasheet contains design details including metal layer geometry
  - Illuminated by power diode
- Highly Configurable
  - Battery-Powered samples
  - MicroAmps are expressed as millivolts (SENS pin)
  - Measurement by MCU or by multimeter (accuracy of tens of millivolts)
- Measurements
  - Static/Leakage Power
  - Static power data dependency



Data Dependency Demonstrator Concept Low Cost Demonstrator Visualization





CMOS 4011 Decapsulation Traditional Chemical Process

- Fuming HNO<sub>3</sub> is used (above 86%)
- Cu bonding was dissolved, DIE remains OK
- After bonding recovery (bonding machine), the circuit was operational

But:

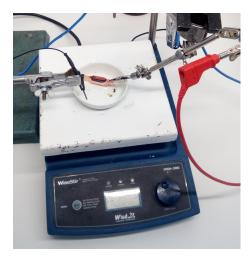
Bonding recovery takes too much time



CMOS 4011 Decapsulation Electro-Chemical Process – Prerequisites

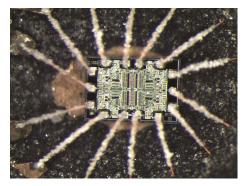
- Concentrated  $H_2SO_4$  (1 part) + red fuming  $HNO_3$  (3 parts)
- Device was milled above DIE to speed-up decapsulation
- Device was covered using conductive copper tape





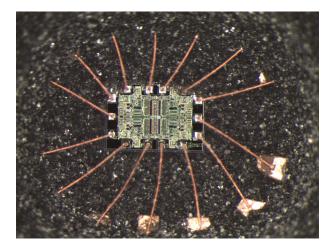

- Positive electrode device being decapsulated
- Negative electrode platinum is recommended in literature
- Negative electrode low cost alternatives:
  - Graphite electrode (originally from a pencil) it works, but it dissolves due to fillers
  - Stainless electrode provides satisfactory results (stainless steel screw was used)
- Potential: 5V (current was about 50 100 mA)
- Acid temperature: 70 80 °C
- Decapsulation time: > 1 minute

<sup>&</sup>lt;sup>1</sup>Endoh, Hirohiko, and Takuya Naoe. "Copper wire bonding package decapsulation using the anodic protection method." Microelectronics Reliability 55.1 (2015): 207-212.




#### CMOS 4011 Decapsulation Electro-Chemical Process – Illustration





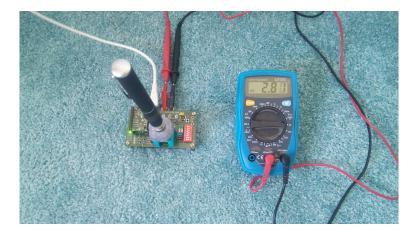

- Decapsulated device was washed in acetone
- The process residual are the  $Cu^{2+}$  salts  $(CuSO_4, Cu(NO_3)_2)$
- ightarrow salts were dissolved in the distilled water





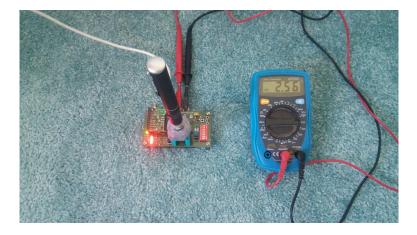
# CMOS 4011 Decapsulation Decapsulated and Operational CMOS 4011






# Live Demo ... Later :-)

Low-Cost CMOS Power Consumption Data Dependency Demonstrator Concept




# CMOS 4011 Demo – Experiments All-1 inputs; 50mW laser: 2810 $\mu$ A





#### CMOS 4011 Demo – Experiments All-0 inputs; 50mW laser: 2560 $\mu$ A





Future Work is related to submicron technology and applications of the phenomena in the security area:

- research of the "cocktail effect" influence
- modulated static current variability modeling and simulation
- measurements using devices manufactured by using corresponding (in the field) technologies
- attack scenario formulation and validation

The author <sup>1</sup> acknowledges the support of the OP VVV MEYS funded project CZ.02.1.01/0.0/0.0/16\_019/0000765 "Research Center for Informatics" and the CTU grant SGS17/213/OHK3/ 3T/18.