KET/KTL 2019

Introduction to the Safe, Readable, Maintainable and Secure
Code for Embedded C

Tipy a priklady

FACULTY OF ELECTRICAL
> ENGINEERING

UNIVERSITY

OF WEST BOHEMIA

>

UNIVERSITY
OF WEST BOHEMIA

About C D -
I'm Free to (do anything) ... realy? o WSt BoHEIA

m C is imperative procedural language
m describes algorithms
m uses functions (procedures)
m C is everywhere
m C compiler is the must for any platform (from MCU to
supercomputer)

m C has simple design
m weak types, pointers & pointer arithmetic, pre-processor,
inline assembler, ...
m Basic types: int, float, enum
m Derived types: array, pointer, struct, union

About C D .
C is Portable but Platform Dependent?! eIV

m Data types:

m char, short, long, int
m signed, unsigned — signed is default and may be implicit
m float, double

About C .

C is Portable but Platform Dependent?! eIV

m Data types:
m char, short, long, int
m signed, unsigned — signed is default and may be implicit
m float, double

sizeof (char) == 1
sizeof (short int) <= sizeof (int) <= sizeof (long int)
sizeof (unsigned int) = sizeof (signed int)

sizeof (float) <= sizeof (double) <= sizeof (long double)

typedef unsigned char uint8_t;
typedef signed char uint8_t;
typedef unsigned short int uintlé6_t;

About C .

C is Portable but Platform Dependent?! eIV

m Data types:
m char, short, long, int
m signed, unsigned — signed is default and may be implicit
m float, double

// File: /usr/arm-none-eabi/include/machine/_default_types.h
#ifdef INT16_TYPE_

typedef __INT16_TYPE__ __intl6_t;
#ifdef __UINT16_TYPE__
typedef __UINT16_TYPE__ __uintlé6_t;
#else
typedef unsigned __INT16_TYPE__ __uintl6_t;
#endif
#define ___int16_t_defined 1
#elif EXP(INT_MAX) == OxT7fff

typedef signed int __intl16_t;
typedef unsigned int __uintl6_t;
#define ___intl16_t_defined 1

About C .

C is Portable but Platform Dependent?! UNIVERSITY

OF WEST BOHEMIA

m Data types:

m char, short, long, int
m signed, unsigned — signed is default and may be implicit
m float, double

// File: /usr/arm-none-eabi/include/sys/_stdint.h
#ifdef ___intl6_t_defined
#ifndef _INT16_T_DECLARED
typedef __intl6_t intl6_t ;
#define _INT16_T_DECLARED
#endif

#ifndef _UINT16_T_DECLARED

typedef __uintl6_t uintl6_t ;
#define _UINT16_T_DECLARED
#endif
#define __intl16_t_defined 1
#endif /* ___intl6_t_defined */

About C D .
C is Portable but Platform Dependent?! eIV

m Data types:

m char, short, long, int
m signed, unsigned — signed is default and may be implicit
m float, double

sizeof (char) ==

sizeof (uint8_t) == sizeof(int8_t) =
sizeof (uint16_t) == sizeof (intil16_t)
sizeof (uint32_t) == sizeof (int32_t)

About C .

Rea//y Bad COde UNIVERSITY

OF WEST BOHEMIA

void main () {
int a, 1i;
int *x = &a;

for(a = 10, i = 0; i < 10; i++)
if (x = 10)
goto LOOP;
else
printf ("X !=,10,\n");
x += 1;
a += 2;
printf ("X, +=,1;,2a,+=2,\n");

LOOP:
printf ("Start Loopy...u%kd,%d\n", a, *x);

while (1)
asm("nop");

About C .

Rea//y Bad COde UNIVERSITY

OF WEST BOHEMIA

void main() {

int a, ij; // bad names - too short
int *x = &a; // and undocumented
for(a = 10, i = 0; i < 10; i++) // missing brackets
if (x = 10) // this is always TRUE!
goto LOOP; // goto in C
else
printf ("X !=,10,\n"); // END-of-for is here!
X += 1;
a += 2;

printf ("X, +=,1;,a,+=2,\n");

LOOP:
printf ("Start Loopy...u%kd,%d\n", a, *x);
// *x is at address 10 ... that’s not our memory
while (1)

asm("nop");

About C D <
General Recommendations R

m use comments
m write self-documented code

m decomposition — use functions, translation units

About C D <
General Recommendations oL ey BOHEMIA

About C
m I'm Free to (do
anything) ... realy?
m C is Portable but
Platform Dependent?!
m Really Bad Code
m General

Recommendations

Preprocessor D >

B preprocessor operates on strings

m may do dangerous and unexpected (!) things ...

Preprocessor D <

Use Include Guards

Compliant solution:

#ifndef HEADER_H
#define HEADER_H

/* ... Contents of <header.h> ... %/

#endif /* HEADER_H =x/

Preprocessor D >

Wrap multi-statement macros in a do-while loop

#define SWAP(x, y) \
tmp = x; \
x = y; \

y = tmp

int x, y, z, tmp;

if (z == 0)
SWAP(x, y);
Expands to:
int x, y, z, tmp;
if (z == 0)
tmp = x;
X = y;
y = tmp;

Preprocessor D <
Wrap multi-statement macros in a do-while loop sy

Compliant solution:

#define SWAP(x, y) \

do { \
tmp = (x); \
(x) = (y); \
(y) = tmp; } \
while (0)

Preprocessor D <
Do not conclude macro definitions with a semicolon ey

#define FOR_LOOP(n) for(i=0; i<(n); i++);

int ij;
FOR_LOOP (3)
{
puts ("Inside for loop\n");
}
Expands to:
for(i=0; i<(3); i++); // empty loop
{
puts ("Inside for loop\n");
}

Preprocessor D >

Do not conclude macro definitions with a semicolon

Compliant solution:

#define FOR_LOOP(n) for(i=0; i<(mn); i++)

int ij;
FOR_LOOP (3)
{
puts ("Inside for loop\n");
}

Do Not Use Function-like Macros

Preprocessor D >

#define CUBE(X) ((X) * (X) * (X))

void func(void) {

int i = 2;
int a = 81 / CUBE(++i);
/* ... %/

}

Expands to:

int a = 81 / ((++i) * (++i) * (++i));

m brackets are fine, but

m multiple increment was not intended!

Preprocessor D >

Do Not Use Function-like Macros

Compliant solution:

inline int cube(int i) {
return i *x i * ij;

}

void func(void) {
int i = 2;
int a = 81 / cube(++i);
/* ... %/

}

Preprocessor >

Prefer Enums TR

OF WEST BOHEMIA

#define STATE_A 0
#define STATE_B 1
#define STATE_C 2
#define STATE_D 3
#define STATE_LAST 4

uint8_t getNextState(uint8_t currState) {
return (currState + 1) % STATE_LAST;
}

Preprocessor D >

Prefer Enums

Better solution:

typedef enum {
STATE_A = O,
STATE_B,
STATE_C,
STATE_D,
STATE_LAST

} states_t;

states_t getNextState(states_t currState) {
return (currState + 1) % (STATE_LAST + 1);
}

Note: do not use constants declared inside enumerate in
preprocessor constructs — preprocessor does not know compiler
defines!

Preprocessor D >

Prefer Enums

m provides (a little bit of) type checking

m debugger may be able to display ENUM names instead of
values (NICE!)

m compiler numbers enum items automatically

m compiler warning (limited, but present !)
m switch statement missing case
B mixing types — some compilers and analyzers can warn
you (clang -Wenum-conversion)

Prefer Enums

Preprocessor D .

m Wrap multi-statement
macros in a do-while
loop

m Do not conclude macro
definitions with a
semicolon

m Do Not Use
Function-like Macros

Preprocessor m Prefer Enums
m Use Include Guards

Code Analyzers D <

m Static code analysis: splint, cppcheck, compilers (incl.
warnings), . ..

m Preffer C-language over preprocessor — (future) tools may
catch possible errors

m Featured Reading and Resources:

B Boswell, Dustin, and Trevor Foucher. The Art of Readable Code: Simple
and Practical Techniques for Writing Better Code. " O'Reilly Media,
Inc.”, 2011.

B Seacord, Robert C. The CERT C secure coding standard. Pearson
Education, 2008.

B Barnes, John Gilbert Presslie. Safe and secure software: An invitation to
Ada 2005. AdaCore, 2008.

Thank you for your attention!

FACULTY OF ELECTRICAL
> ENGINEERING

UNIVERSITY

OF WEST BOHEMIA

	About C
	I'm Free to (do anything) …realy?
	C is Portable but Platform Dependent?!
	Really Bad Code
	General Recommendations

	Preprocessor
	Use Include Guards
	Wrap multi-statement macros in a do-while loop
	Do not conclude macro definitions with a semicolon
	Do Not Use Function-like Macros
	Prefer Enums

	Code Analyzers

