
NP-completeness: Some Reductions

1. SAT to 3SAT

SAT: Given a collection C = {c1, c2, . . . , cm} of clauses, where each clause consists
of a set of literals (representing the disjunction of those literals) over the finite set
of Boolean variables U = {u1, u2, . . . , un}, is there an assignment of truth values to
U which makes every clause true ?
Example: For the collection c1 = {u1, u2, u4}(= u1 ∨ u2 ∨ u4), c2 = {u2, u3}, c3 =
{u1, u2, u3, u4}, over the variables {u1, u2, u3, u4} the answer is yes. (One assignment
is u1 false, u2 false, u3 false (irrelevant),u4 false (irrelevant)).

3-SAT: A version of the SAT problem in which every clause has 3 literals.

We’ll prove that 3-SAT is NP-complete. Firstly, note that 3-SAT ∈ NP since a
non-deterministic algorithm need only guess an assignment of values to U and check
if it works in polynomial time (≤ 3× no. of clauses).

We’ll next find a polynomial reduction from SAT to 3-SAT.
Let the given instance of SAT contain the collection C = {c1, c2, . . . , cm} of clauses
over the variables U = {u1, u2, . . . , un}. We construct a collection C ′ of 3 literal
clauses over the variables U ′ which consist of the original variables plus sets of
additional variables as follows:

Replace each clause ci ∈ C by a collection of 3 literal clauses over the variables
which appear in ci plus some additional variables which appear only in these 3
literal clauses. The exact procedure depends on the number of literals in ci. Let
ci ∈ C be given by {z1, z2, . . . , zk} where the zj’s are literals over U . If

k = 1 ci = {z1}. Use two additional variables {yi,1, yi,2}. Form the collection C ′
i =

{{z1, yi,1, yi,2}, {z1, yi,1, yi,2}, {z1, yi,1, yi,2}, {z1, yi,1, yi,2}}
k = 2 ci = {z1, z2}. Use one additional variable {yi,1}.

Form the collection C ′
i = {{z1, z2, yi,1}, {z1, z2, yi,1}}

k = 3 ci = {z1, z2, z3}. No additional variables. C ′
i = ci.

k > 3 Use the additional variables {yi,1, yi,2, . . . , yi,k−3}. Form the collection C ′
i =

{{z1, z2, yi,1},
{yi,1, z3, yi,2}, {yi,2, z4, yi,3}, {yi,3, z5, yi,4}, . . . , {yi,k−3, zk−1, zk}}

Example (cont’d): The transformation results in the collection of 3 literal clauses
C ′

1 = {u1, u2, u4}, C ′
2 = {{u2, u3, y2,1}, {u2, u3, y2,1}}, C ′

3 = {{u1, u2, y3,1}, {y3,1, u3, u4}}
over the variables {u1, u2, u3, u4, y2,1, y3,1}.

To show that this procedure forms a polynomial reduction, firstly we observe that
the number of 3 literal clauses in C ′ is bounded by a polynomial in nm which leads to
the procedure being a polynomial time one. Secondly, whenever C is satisfiable, then
the C ′ clauses formed in the cases k ≤ 3 are automatically satisfied (for arbitrary
assignment of any additional variables) while in the case k > 3

(a) If z1 or z2 is true, assign all additional variables the truth value “false”. In this
case, the first literal in each relevant clause is true.



(b) If zk−1 or zk is true, assign all additional variables the truth value “true”. In
this case, the third literal in each relevant clause is true.

(c) Otherwise, if zl is true, assign yi,j the value “true” when 1 ≤ j ≤ l − 2 and
the value “false” when l− 1 ≤ j ≤ k − 3. In this case, the third literal in each
relevant clause preceding the one which includes zl is true while the first literal
in each relevant clause succeeding the one which includes zl is true.

Thus all the clauses in C ′ are satisfied. Conversely, if all the clauses in C ′ are satis-
fied by an truth assignment to U ′ (which includes the original variables), then C is
satisfied by the same truth assignment restricted to U .
Thus we conclude that C ′ is satisfied if and only if C is satisfied.

Example(cont’d): The collection of 3-literal clauses {u1, u2, u4}, {u2, u3, y2,1}, {u2, u3, y2,1},
{u1, u2, y3,1}, {y3,1, u3, u4} is satisfied by u1 false, u2 false, u3 false,u4 false, y2,1 false
(irrelevant) and y3,1 false (irrelevant).

2. Graph Colouring

Graph 3-colouring Problem: Given a graph G = (V, E) is there a way to colour the
vertices of G with 3 colours? A valid colouring of the graph requires all adjacent
nodes to have different colours.
Graph 4-colouring Problem: Given a graph G′ = (V ′, E ′) is there a way to colour
the vertices of G′ with 4 colours? Again adjacent nodes must have different colours.

Since it is easy to verify a proposed 3-colouring in polynomial time, the problem is
in NP. There is a reduction that reduces 3SAT to Graph 3-Colouring; thus showing
that Graph 3-Colouring is NP-Complete.

We now show how to reduce 3-Colouring to 4-Colouring. Given a graph G, we create
a new graph G′ as follows. Add a new vertex v to G and add an edge from v to
each vertex of V . V ′ = V ∪ {v}. E ′ = E ∪ {(v, u); u ∈ V }.
To prove the correctness of the reduction observe that if G is 3 colourable then G′

is 4 colourable (use the new colour for v). If G′ is 4 colourable, then assuming that
v uses one colour, the remaining vertices of G′ use only 3 colours and this shows
that G is 3 colourable.

3. HC to TSP


